On donne dans cette Note une généralisation d'un théorème de Hardy pour la transformation de Dunkl
In this Note we give a generalization of Hardy's theorem for the Dunkl transform
Accepté le :
Publié le :
Léonard Gallardo 1 ; Khalifa Trimèche 2
@article{CRMATH_2002__334_10_849_0, author = {L\'eonard Gallardo and Khalifa Trim\`eche}, title = {Un analogue d'un th\'eor\`eme de {Hardy} pour la transformation de {Dunkl}}, journal = {Comptes Rendus. Math\'ematique}, pages = {849--854}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02361-0}, language = {fr}, }
Léonard Gallardo; Khalifa Trimèche. Un analogue d'un théorème de Hardy pour la transformation de Dunkl. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 849-854. doi : 10.1016/S1631-073X(02)02361-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02361-0/
[1] Uncertainty principles like Hardy's theorem on some Lie groups, J. Austral. Math. Soc. Ser. A, Volume 65 (1999), pp. 239-302
[2] Éléments de mathématiques, Fascicule XXI. Intégration des mesures, Chapitre 5, Hermann, Paris, 1967
[3] Generalizations of Heisenberg inequality, Lecture Notes in Math., 992, Springer, Berlin, 1983, pp. 443-449
[4] The Dunkl transform, Invent. Math., Volume 113 (1993), pp. 147-162
[5] Hankel transforms associated to finite reflection groups, Contemp. Math., Volume 138 (1992), pp. 123-138
[6] An Lp version of the Hardy theorem for the motion group, J. Austral. Math. Soc. Ser. A, Volume 68 (2000), pp. 55-67
[7] A theorem concerning Fourier transform, J. London Math. Soc., Volume 8 (1933), pp. 227-231
[8] An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991), pp. 341-350
[9] Dunkl operators formalism for quantum many-body problems associated with classical root systems, J. Phys. Soc. Japan, Volume 65 (1996), pp. 394-401
[10] Exact operator solution of the Calogero–Sutherland model, Comm. Math. Phys., Volume 178 (1996), pp. 425-452
[11] Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys., Volume 192 (1998), pp. 519-542
[12] Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci., Volume 105 (1995), pp. 135-151
[13] The Theory of Functions, Oxford University Press, 1939
[14] K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral transforms and special functions, a paraı̂tre
- On Hardy’s inequality for symmetric integral transforms and analogous, Applied Mathematics and Computation, Volume 198 (2008) no. 1, p. 346 | DOI:10.1016/j.amc.2007.08.040
- AnLp-Lq-Version of Morgan's Theorem for then-Dimensional Euclidean Motion Group, International Journal of Mathematics and Mathematical Sciences, Volume 2007 (2007), p. 1 | DOI:10.1155/2007/43834
- Uncertainty principle and (Lp,Lq)sufficient pairs on Chébli–Trimèche hypergroups, Integral Transforms and Special Functions, Volume 16 (2005) no. 8, p. 625 | DOI:10.1080/10652460500110404
- AN ANALOGUE OF COWLING–PRICE'S THEOREM AND HARDY'S THEOREM FOR THE GENERALIZED FOURIER TRANSFORM ASSOCIATED WITH THE SPHERICAL MEAN OPERATOR, Analysis and Applications, Volume 02 (2004) no. 03, p. 177 | DOI:10.1142/s0219530504000370
- AnLpversion of Hardy's theorem for the Jacobi–Dunkl transform, Integral Transforms and Special Functions, Volume 15 (2004) no. 3, p. 225 | DOI:10.1080/10652460310001600690
- An LP version of Hardy's theorem for the Dunkl transform, Journal of the Australian Mathematical Society, Volume 77 (2004) no. 3, p. 371 | DOI:10.1017/s1446788700014518
Cité par 6 documents. Sources : Crossref
Commentaires - Politique