In [8], Bor has obtained a main theorem dealing with Riesz summability factors of infinite series and Fourier series. In this paper, we generalized that theorem to
Révisé le :
Accepté le :
Publié le :
Şebnem Yıldız 1

@article{CRMATH_2021__359_5_555_0, author = {\c{S}ebnem Y{\i}ld{\i}z}, title = {A new extension on the theorem of {Bor}}, journal = {Comptes Rendus. Math\'ematique}, pages = {555--562}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.195}, language = {en}, }
Şebnem Yıldız. A new extension on the theorem of Bor. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 555-562. doi : 10.5802/crmath.195. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.195/
[1] Best approximation and differential of two conjugate functions, Tr. Mosk. Mat. O.-va, Volume 5 (1956), pp. 483-522 (in Russian) | MR
[2] On two summability methods, Math. Proc. Camb. Philos. Soc., Volume 97 (1985), pp. 147-149 | MR | Zbl
[3] On the relative strength of two absolute summability methods, Proc. Am. Math. Soc., Volume 113 (1991), pp. 1009-1012 | MR | Zbl
[4] Quasimonotone and almost increasing sequences and their new applications, Abstr. Appl. Anal., Volume 2012 (2012), 793548, 6 pages | MR | Zbl
[5] On absolute weighted mean summability of infinite series and Fourier series, Filomat, Volume 30 (2016) no. 10, pp. 2803-2807 | MR | Zbl
[6] Some new results on absolute Riesz summability of infinite series and Fourier series, Positivity, Volume 20 (2016) no. 3, pp. 599-605 | MR | Zbl
[7] An application of quasi-monotone sequences to infinite series and Fourier series, Anal. Math. Phys., Volume 8 (2018) no. 1, pp. 77-83 | MR | Zbl
[8] On absolute Riesz summability factors of infinite series and their aplication to Fourier series, Georgian Math. J., Volume 26 (2019) no. 3, pp. 361-366 | Zbl
[9] Sur la multiplication des sèries, Bull. Sci. Math., Volume 14 (1890), pp. 114-120 | Zbl
[10] Functions of bounded variation and the Cesàro means of Fourier series, Acad. Sinica Sci. Record, Volume 1 (1945), pp. 283-289 | Zbl
[11] On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 113-141 | DOI | MR | Zbl
[12] Divergent Series, Clarendon Press, 1949 | Zbl
[13] Sur lès series absolument sommables par la methode des moyennes arithmetiques, Bull. Sci. Math., Volume 49 (1925), p. 234--256 | Zbl
[14] On the summability of infinite series and Hüseyin Bor, J. Hist. Math., Volume 30 (2017), pp. 353-365 (in Korean)
[15] A new application of quasi power increasing sequences, Publ. Math., Volume 58 (2001) no. 4, pp. 791-796 | MR
[16] On the relative strength of two absolute summability methods, J. Comput. Anal. Appl., Volume 11 (2009) no. 3, pp. 576-583 | MR | Zbl
[17] On the local properties of factored Fourier series, Math. Comp., Volume 216 (2010) no. 11, pp. 3386-3390 | MR | Zbl
[18] On some summability factors of infinite series, Proc. Am. Math. Soc., Volume 115 (1992) no. 5, pp. 313-317 | DOI | MR
[19] Inclusion theorems for absolute matrix summability methods of an infinite series, IV, Indian J. Pure Appl. Math., Volume 34 (2003) no. 11, pp. 1547-1557 | MR | Zbl
[20] Extension on absolute summability factors of infinite series, J. Math. Anal. Appl., Volume 322 (2006) no. 2, pp. 1224-1230 | DOI | MR
[21] Some new factor theorem for absolute summability, Demonstr. Math., Volume 46 (2013) no. 1, pp. 149-156 | MR | Zbl
[22] On application of matrix summability to Fourier series, Math. Methods Appl. Sci., Volume 41 (2018) no. 2, pp. 664-670 | MR | Zbl
[23] An absolute matrix summability of infinite series and Fourier series, Bol. Soc. Parana. Mat., Volume 38 (2020) no. 7, pp. 49-58 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique