In this note we give sufficient conditions for the boundedness of periodic Fourier integral operators. We also refer to them as Fourier series operators (FSOs). The main tool will be the notion of full symbol and the periodic analysis on the torus introduced by Ruzhansky and Turunen [34].
Dans cette note nous présentons les conditions suffisantes pour la continuité des opérateurs intégraux de Fourier périodique qui sont appelés aussi séries des opérateurs de Fourier. Le principal outil est la notion des opérateurs intégraux de Fourier et l’analyse discrête notamment l’analyse périodique dans le tore introduite par Ruzhansky et Turunen [34].
Revised:
Accepted:
Published online:
Duván Cardona 1; Rekia Messiouene 2; Abderrahmane Senoussaoui 2
@article{CRMATH_2021__359_5_547_0, author = {Duv\'an Cardona and Rekia Messiouene and Abderrahmane Senoussaoui}, title = {Periodic {Fourier} integral operators in $L^p$-spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {547--553}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.194}, language = {en}, }
TY - JOUR AU - Duván Cardona AU - Rekia Messiouene AU - Abderrahmane Senoussaoui TI - Periodic Fourier integral operators in $L^p$-spaces JO - Comptes Rendus. Mathématique PY - 2021 SP - 547 EP - 553 VL - 359 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.194 LA - en ID - CRMATH_2021__359_5_547_0 ER -
Duván Cardona; Rekia Messiouene; Abderrahmane Senoussaoui. Periodic Fourier integral operators in $L^p$-spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 547-553. doi : 10.5802/crmath.194. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.194/
[1] Spectral properties of elliptic pseudo-differential operators on a closed curve, Funct. Anal. Appl., Volume 13 (1971), pp. 279-281 | DOI
[2] On some oscillatory integral transformations in , Jpn. J. Math., Volume 4 (1978) no. 2, pp. 299-361 | DOI | MR | Zbl
[3] Estimativos para una clase de operadores pseudodiferenciales definidos en el toro, Rev. Integr., Volume 31 (2013) no. 2, pp. 147-152 | Zbl
[4] Hölder estimates for pseudo-differential operators on , J. Pseudo-Differ. Oper. Appl., Volume 5 (2014) no. 4, pp. 517-525 | DOI | Zbl
[5] Weak type (1, 1) bounds for a class of periodic pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., Volume 5 (2014) no. 4, pp. 507-515 | DOI | MR | Zbl
[6] Hölder–Besov boundedness for periodic pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., Volume 8 (2016) no. 1, pp. 13-34 | DOI | MR | Zbl
[7] On the boundedness of periodic pseudo-differential operators, Monatsh. Math., Volume 185 (2018) no. 2, pp. 189-206 | DOI | MR | Zbl
[8] Pseudo-differential operators in Hölder spaces revisited. Weyl-Hörmander calculus and Ruzhansky-Turunen classes, Mediterr. J. Math., Volume 16 (2019) no. 6, 148, 17 pages | MR | Zbl
[9] Multilinear analysis for discrete and periodic pseudo-differential operators in spaces, Rev. Integr., Volume 36 (2018) no. 2, pp. 151-164 | Zbl
[10] -boundedness and -nuclearity of multilinear pseudo-differential operators on and the torus , J. Fourier Anal. Appl., Volume 25 (2019) no. 6, pp. 2973-3017 | DOI | MR | Zbl
[11] The nuclear trace of periodic vector-valued pseudo-differential operators with applications to index theory (2019) (https://arxiv.org/abs/1901.10010, to appear in Math. Nachr.)
[12] -bounds for periodic Fourier integral operators (2019) (https://arxiv.org/abs/1807.09892)
[13] Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups (2021) (https://arxiv.org/abs/2008.09651)
[14] On the boundedness of Fourier integral operators on , C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 15-16, pp. 847-851 | DOI | MR | Zbl
[15] Global continuity of Fourier integral operators, Trans. Am. Math. Soc., Volume 366 (2014) no. 5, pp. 2575-2596 | DOI | MR | Zbl
[16] bounds for pseudo-differential operators on the torus, Pseudo-differential operators, generalized functions and asymptotics (Operator Theory: Advances and Applications), Volume 231, Birkhäuser/Springer, 2013, pp. 103-116 | DOI | MR | Zbl
[17] -bounds for pseudo-differential operators on compact Lie groups, J. Inst. Math. Jussieu, Volume 18 (2019) no. 3, pp. 531-559 | DOI | MR | Zbl
[18] Fourier integral operators. II, Acta Math., Volume 128 (1972) no. 3-4, pp. 183-269 | DOI | MR | Zbl
[19] Degenerate elliptic pseudodifferential equations of principal type, Mat. Sb., Volume 82 (1970) no. 124, pp. 585-628 | MR | Zbl
[20] Construction of the fundamental solution for the Schrödinger equations, Proc. Japan Acad., Volume 55 (1979) no. 1, pp. 10-14 | Zbl
[21] Fourier integral operators. I, Acta Math., Volume 127 (1971) no. 1-2, pp. 79-183 | DOI | MR
[22] The analysis of linear partial differential operators. III: Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | Zbl
[23] A calculus of Fourier integral operators on and the fundamental solution for an operator of hyperbolic type, Commun. Partial Differ. Equations, Volume 1 (1976) no. 1, pp. 1-44 | DOI | MR | Zbl
[24] Local and Global description of periodic pseudo-differential operators, Math. Nachr., Volume 150 (1991), pp. 151-161 | DOI | MR | Zbl
[25] On some estimates for the wave equation in and , J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1998), pp. 331-354 | Zbl
[26] Pseudo-differential operators on , New developments in pseudo-differential operators (Operator Theory: Advances and Applications), Volume 189, Birkhäuser, 2008, pp. 297-306 | DOI | Zbl
[27] Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on , J. Pseudo-Differ. Oper. Appl., Volume 1 (2010) no. 2, pp. 183-205 | DOI | MR | Zbl
[28] -estimates for the wave equation, J. Funct. Anal., Volume 36 (1980), pp. 114-145 | DOI | MR | Zbl
[29] Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations, CWI Tracts, 131, Centrum voor Wiskunde en Informatica, 2001 | MR | Zbl
[30] Global -boundedness theorems for a class of Fourier integral operators, Commun. Partial Differ. Equations, Volume 31 (2006) no. 4-6, pp. 547-569 | DOI | MR | Zbl
[31] A smoothing property of Schrödinger equations in the critical case, Math. Ann., Volume 335 (2006) no. 3, pp. 645-673 | DOI | Zbl
[32] Weighted Sobolev estimates for a class of Fourier integral operators, Math. Nachr., Volume 284 (2011) no. 13, pp. 1715-1738 | DOI | MR | Zbl
[33] A local-to-global boundedness argument and Fourier integral operators, J. Math. Anal. Appl., Volume 473 (2019) no. 2, pp. 892-904 | DOI | MR | Zbl
[34] Pseudo-differential operators and symmetries: Background analysis and advanced topics, Pseudo-Differential Operators. Theory and Applications, 2, Birkhäuser, 2010 | Zbl
[35] Quantization of pseudo-sifferential operators on the torus, J. Fourier Anal. Appl., Volume 16 (2010) no. 6, pp. 943-982 | DOI | Zbl
[36] Dispersive type estimates for Fourier integrals and applications to hyperbolic systems, Discrete Contin. Dyn. Syst., Volume 2011 (2011), pp. 1263-1270 | DOI | MR | Zbl
[37] Fourier multipliers on compact Lie groups, Math. Z., Volume 280 (2015) no. 3-4, pp. 621-642 | DOI | MR | Zbl
[38] Regularity properties of Fourier integral operators, Ann. Math., Volume 134 (1991) no. 2, pp. 231-251 | DOI | MR | Zbl
[39] Harmonic Analysis, Princeton Mathematical Series, 43, Princeton University Press, 1993 | Zbl
[40] The weak-type of Fourier integral operators of order , J. Aust. Math. Soc., Volume 76 (2004) no. 1, pp. 1-21 | MR | Zbl
[41] On symbol analysis of periodic pseudodifferential operators, Z. Anal. Anwend., Volume 17 (1998) no. 1, pp. 9-22 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy