[Vérification exacte de la conjecture BSD forte pour certaines variétés abéliennes absolument simples]
Soit
Let
Révisé le :
Accepté le :
Publié le :
Timo Keller 1 ; Michael Stoll 1

@article{CRMATH_2022__360_G5_483_0, author = {Timo Keller and Michael Stoll}, title = {Exact verification of the strong {BSD} conjecture for some absolutely simple abelian surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--489}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.313}, language = {en}, }
TY - JOUR AU - Timo Keller AU - Michael Stoll TI - Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces JO - Comptes Rendus. Mathématique PY - 2022 SP - 483 EP - 489 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.313 LA - en ID - CRMATH_2022__360_G5_483_0 ER -
Timo Keller; Michael Stoll. Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 483-489. doi : 10.5802/crmath.313. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.313/
[1] Numerical verification of the Birch and Swinnerton–Dyer conjecture for hyperelliptic curves of higher genus over
[2] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3–4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[3] On the modularity of elliptic curves over
[4] A nonvanishing theorem for derivatives of automorphic
[5] On the Iwasawa main conjectures for modular forms at non-ordinary primes, 2018 (https://arxiv.org/abs/1804.10993)
[6] On the surjectivity of the Galois representations associated to non-CM elliptic curves, Can. Math. Bull., Volume 48 (2005) no. 1, pp. 16-31 (With an appendix by Ernst Kani) | DOI | MR | Zbl
[7] Second isogeny descents and the Birch and Swinnerton–Dyer conjectural formula, J. Algebra, Volume 372 (2012), pp. 673-701 | DOI | MR | Zbl
[8] Explicit determination of the images of the Galois representations attached to abelian surfaces with
[9] Empirical evidence for the Birch and Swinnerton–Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comput., Volume 70 (2001) no. 236, pp. 1675-1697 | DOI | MR | Zbl
[10] Computational verification of the Birch and Swinnerton–Dyer conjecture for individual elliptic curves, Math. Comput., Volume 78 (2009) no. 268, pp. 2397-2425 | DOI | MR | Zbl
[11] Heegner points and derivatives of
[12] Table of quotient curves of modular curves
[13] Finiteness of the Shafarevich–Tate group and the group of rational points for some modular abelian varieties, Algebra Anal., Volume 1 (1989) no. 5, pp. 171-196 | MR | Zbl
[14] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (With an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl
[15] Explicit isogeny descent on elliptic curves, Math. Comput., Volume 82 (2013) no. 281, pp. 513-529 | DOI | MR | Zbl
[16] Canonical heights on genus-2 Jacobians, Algebra Number Theory, Volume 10 (2016) no. 10, pp. 2153-2234 | DOI | MR | Zbl
[17] How to do a
[18] Multiplicative reduction and the cyclotomic main conjecture for
[19] The Iwasawa main conjectures for
[20] Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith., Volume 98 (2001) no. 3, pp. 245-277 | DOI | MR | Zbl
[21] Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl
[22] Genus 2 curves over
[23] Sur les valeurs de certaines fonctions
[24]
[25] Modular elliptic curves and Fermat’s last theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique