[Visualisation expérimentale et numérique du champ de vitesse dans un réfrigérateur thermoacoustique]
L'écoulement oscillant autour de l'empilement de plaques d'un réfrigérateur thermoacoustique est visualisé expérimentalement avec une technique PIV et numériquement en utilisant des simulations basées sur un modèle d'écoulement à faible nombre de Mach. Les conditions d'expérience et de simulation sont similaires. Les résultats sont obtenus pour deux configurations distinctes, respectivement des plaques épaisses et des plaques fines. Dans le deuxième cas, l'écoulement autour des extrémités est caractérisé par des couches de vorticité étirées, alors qu'avec des plaques épaisses l'écoulement est dominé par les oscillations de tourbillons denses. Les résultats obtenus expérimentalement et numériquement sont similaires, et renforcent la validité des deux méthodes.
The oscillating flow field in a thermoacoustic stack is visualized experimentally using PIV measurements, and computationally using results of low-Mach-number simulations. The experiments and computations are performed under similar conditions. Results are obtained for two distinct configurations, involving thin and thick stack plates. In the first case, the flow field around the edge of the stack exhibits elongated vorticity layers, while in the latter it is dominated by the shedding and impingement of concentrated vortices. A close agreement between experimental and computational results is found, thus providing strong support for both approaches and further predictions.
Accepté le :
Publié le :
Mots-clés : Transfers thermiques, Thermoacoustique, Écoulement oscillant, PIV, Simulation
Philippe Blanc-Benon 1 ; Etienne Besnoin 2 ; Omar Knio 2
@article{CRMECA_2003__331_1_17_0, author = {Philippe Blanc-Benon and Etienne Besnoin and Omar Knio}, title = {Experimental and computational visualization of the flow field in a thermoacoustic stack}, journal = {Comptes Rendus. M\'ecanique}, pages = {17--24}, publisher = {Elsevier}, volume = {331}, number = {1}, year = {2003}, doi = {10.1016/S1631-0721(02)00002-5}, language = {en}, }
TY - JOUR AU - Philippe Blanc-Benon AU - Etienne Besnoin AU - Omar Knio TI - Experimental and computational visualization of the flow field in a thermoacoustic stack JO - Comptes Rendus. Mécanique PY - 2003 SP - 17 EP - 24 VL - 331 IS - 1 PB - Elsevier DO - 10.1016/S1631-0721(02)00002-5 LA - en ID - CRMECA_2003__331_1_17_0 ER -
%0 Journal Article %A Philippe Blanc-Benon %A Etienne Besnoin %A Omar Knio %T Experimental and computational visualization of the flow field in a thermoacoustic stack %J Comptes Rendus. Mécanique %D 2003 %P 17-24 %V 331 %N 1 %I Elsevier %R 10.1016/S1631-0721(02)00002-5 %G en %F CRMECA_2003__331_1_17_0
Philippe Blanc-Benon; Etienne Besnoin; Omar Knio. Experimental and computational visualization of the flow field in a thermoacoustic stack. Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 17-24. doi : 10.1016/S1631-0721(02)00002-5. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)00002-5/
[1] Theory of Sound, Dover, New York, 1945
[2] Thermoacoustic engines, J. Acoust. Soc. Am., Volume 84 (1988), pp. 1145-1180
[3] Numerical simulation of a thermoacoustic refrigerator. Part I: Unsteady adiabatic flow around the stack, J. Comput. Phys., Volume 127 (1996), pp. 424-451
[4] Numerical simulation of thermoacoustic refrigerator. Part II: Stratified flow around the stack, J. Comput. Phys., Volume 144 (1998), pp. 299-324
[5] Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack, Numer. Heat Transfer Part A, Volume 35 (1999), pp. 49-65
[6] Experimental study of thermoacoustic effects on a single plate. Part II: Heat transfer, Heat Mass Transfer, Volume 35 (1999), pp. 433-441
[7] Experimental study of thermoacoustic effects on a single plate. Part I: Temperature fields, Heat Mass Transfer, Volume 36 (2000), pp. 7-20
[8] S. Duffourd, Réfrigérateur Thermoacoustique: Études analytiques et expérimentales en vue d'une miniaturisation, Ph.D. Thesis, N°2001-06, École Centrale de Lyon, 2001
[9] E. Besnoin, Numerical Study of Thermoacoustic Heat Exchangers, Ph.D. Thesis, Department of Mechanical Engineering, The Johns Hopkins University, 2001
[10] Particle Image Velocimetry. A Practical Guide, Springer-Verlag, Berlin, 1998
[11] General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections, J. Acoust. Soc. Am., Volume 90 (1991), pp. 3228-3237
- Numerical simulation investigating the influence of varied stack parameters on the energy conversion in thermoacoustic engines, International Journal of Heat and Mass Transfer, Volume 236 (2025), p. 126305 | DOI:10.1016/j.ijheatmasstransfer.2024.126305
- Harnessing sound waves for sustainable energy: Advancements and challenges in thermoacoustic technology, Energy Nexus, Volume 15 (2024), p. 100320 | DOI:10.1016/j.nexus.2024.100320
- Time-resolved measurement of acoustic density fluctuations using a phase-shifting Mach-Zehnder interferometer, The Journal of the Acoustical Society of America, Volume 155 (2024) no. 4, p. 2438 | DOI:10.1121/10.0025537
- Numerical investigation of nonlinear effects in a standing wave thermoacoustic engine using the discontinuous Galerkin method, International Journal of Heat and Mass Transfer, Volume 216 (2023), p. 124526 | DOI:10.1016/j.ijheatmasstransfer.2023.124526
- Numerical Study of the Excitation of Acoustic Gas Oscillations in an Open Tube with a Heated Section, Lobachevskii Journal of Mathematics, Volume 44 (2023) no. 5, p. 1644 | DOI:10.1134/s1995080223050220
- Transient Thermofluid simulation of a Hybrid Thermoacoustic system, International Journal of Heat and Mass Transfer, Volume 183 (2022), p. 122181 | DOI:10.1016/j.ijheatmasstransfer.2021.122181
- Test-bench for the experimental characterization of porous material used in thermoacoustic refrigerators, The Journal of the Acoustical Society of America, Volume 152 (2022) no. 5, p. 2804 | DOI:10.1121/10.0015051
- Fluid dynamics of oscillatory flow across parallel-plates in standing-wave thermoacoustic system with two different operation frequencies, Engineering Science and Technology, an International Journal, Volume 24 (2021) no. 1, p. 41 | DOI:10.1016/j.jestch.2020.12.008
- Flow visualization in a hybrid thermoacoustic system, Experimental Thermal and Fluid Science, Volume 125 (2021), p. 110374 | DOI:10.1016/j.expthermflusci.2021.110374
- Experimental investigation of oscillating flow characteristics at the exit of a stacked mesh grid regenerator, The Journal of the Acoustical Society of America, Volume 149 (2021) no. 2, p. 807 | DOI:10.1121/10.0003375
- Parity-Time symmetric system based on the thermoacoustic effect, The Journal of the Acoustical Society of America, Volume 149 (2021) no. 3, p. 1913 | DOI:10.1121/10.0003708
- Interferometric Study of the Heat Transfer Phenomena Induced by Rapid Heating of Nickel Sheet, Applied Sciences, Volume 10 (2020) no. 13, p. 4658 | DOI:10.3390/app10134658
- Coupled model and flow characteristics of thermoacoustic refrigerators, Engineering Research Express, Volume 2 (2020) no. 2, p. 025016 | DOI:10.1088/2631-8695/ab8ba5
- Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system, International Journal of Refrigeration, Volume 102 (2019), p. 47 | DOI:10.1016/j.ijrefrig.2019.03.009
- Numerical analysis of the flow pathlines in thermo-acoustic couples, Procedia Manufacturing, Volume 35 (2019), p. 246 | DOI:10.1016/j.promfg.2019.05.035
- Experimental and theoretical study of density fluctuations near the stack ends of a thermoacoustic prime mover, International Journal of Heat and Mass Transfer, Volume 126 (2018), p. 580 | DOI:10.1016/j.ijheatmasstransfer.2018.05.027
- Prediction of limit cycle amplitudes in thermoacoustic engines by means of impedance measurements, Journal of Applied Physics, Volume 124 (2018) no. 15 | DOI:10.1063/1.5040906
- Quantitative visualization of temperature field and measurement of local heat transfer coefficient over heat exchanger elements in sinusoidal oscillating flow, Experimental Thermal and Fluid Science, Volume 85 (2017), p. 22 | DOI:10.1016/j.expthermflusci.2017.02.008
- A 3D investigation of thermoacoustic fields in a square stack, International Journal of Heat and Mass Transfer, Volume 108 (2017), p. 292 | DOI:10.1016/j.ijheatmasstransfer.2016.12.015
- Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator, Experimental Thermal and Fluid Science, Volume 70 (2016), p. 176 | DOI:10.1016/j.expthermflusci.2015.09.012
- , Volume 1685 (2015), p. 030010 | DOI:10.1063/1.4934393
- Pattern-formation under acoustic driving forces, Contemporary Physics, Volume 56 (2015) no. 3, p. 338 | DOI:10.1080/00107514.2015.1008742
- Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components, Energy, Volume 93 (2015), p. 828 | DOI:10.1016/j.energy.2015.09.005
- A quasi-one-dimensional model of thermoacoustics in the presence of mean flow, Journal of Sound and Vibration, Volume 335 (2015), p. 204 | DOI:10.1016/j.jsv.2014.07.003
- Study on Minor Losses Around the Thermoacoustic Parallel Stack in the Oscillatory Flow Conditions, Physics Procedia, Volume 67 (2015), p. 485 | DOI:10.1016/j.phpro.2015.06.063
- Summary of Acoustic Equations, Acoustic Particle Velocity Measurements Using Lasers (2014), p. 1 | DOI:10.1002/9781118649336.ch1
- PIV for Acoustics, Acoustic Particle Velocity Measurements Using Lasers (2014), p. 111 | DOI:10.1002/9781118649336.ch4
- Experimental study of the oscillatory velocity and temperature near a heated circular cylinder in an acoustic standing wave, International Journal of Heat and Mass Transfer, Volume 69 (2014), p. 464 | DOI:10.1016/j.ijheatmasstransfer.2013.10.039
- Computational Fluid Dynamics Simulation of a Thermoacoustic Refrigerator, Journal of Thermophysics and Heat Transfer, Volume 28 (2014) no. 1, p. 78 | DOI:10.2514/1.t4150
- Investigation of the Velocity Profiles in a Ninety-Degree Curved Standing Wave Resonator with Particle Image Velocimetry, Applied Mechanics and Materials, Volume 388 (2013), p. 8 | DOI:10.4028/www.scientific.net/amm.388.8
- Particle image velocimetry measurement on the oscillatory flow at the end of the thermoacoustic parallel stacks, Applied Thermal Engineering, Volume 51 (2013) no. 1-2, p. 325 | DOI:10.1016/j.applthermaleng.2012.09.011
- Experimental study on the flow and heat transfer characteristics of thermoacoustic core, Experimental Thermal and Fluid Science, Volume 44 (2013), p. 219 | DOI:10.1016/j.expthermflusci.2012.06.011
- Experimental visualization and heat transfer analysis of the oscillatory flow in thermoacoustic stacks, Experimental Thermal and Fluid Science, Volume 46 (2013), p. 221 | DOI:10.1016/j.expthermflusci.2012.12.014
- Holographic-Interferometric and Thermoanemometric Study of a Thermoacoustic Prime Mover, Journal of Mechanics, Volume 29 (2013) no. 1, p. 59 | DOI:10.1017/jmech.2012.110
- , 10th International Energy Conversion Engineering Conference (2012) | DOI:10.2514/6.2012-4233
- Visualization investigation of the flow and heat transfer in thermoacoustic engine driven by loudspeaker, International Journal of Heat and Mass Transfer, Volume 55 (2012) no. 25-26, p. 7737 | DOI:10.1016/j.ijheatmasstransfer.2012.07.083
- , 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference) (2011) | DOI:10.2514/6.2011-2932
- Investigation into the Strouhal numbers associated with vortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions, European Journal of Mechanics - B/Fluids, Volume 30 (2011) no. 2, p. 206 | DOI:10.1016/j.euromechflu.2010.10.005
- DEVELOPMENT OF EXPERIMENTAL METHODS TO CAPTURE THE UNSTEADY TEMPERATURE FIELD DISTRIBUTIONS IN THERMOACOUSTIC DEVICES, Experimental Techniques, Volume 35 (2011) no. 2, p. 68 | DOI:10.1111/j.1747-1567.2009.00601.x
- Numerical simulation and parameter optimization of thermo-acoustic refrigerator driven at large amplitude, Cryogenics, Volume 50 (2010) no. 1, p. 28 | DOI:10.1016/j.cryogenics.2009.10.005
- Vortex shedding flow patterns and their transitions in oscillatory flows past parallel-plate thermoacoustic stacks, Experimental Thermal and Fluid Science, Volume 34 (2010) no. 7, p. 954 | DOI:10.1016/j.expthermflusci.2010.02.012
- Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system, International Journal of Thermal Sciences, Volume 49 (2010) no. 9, p. 1688 | DOI:10.1016/j.ijthermalsci.2010.03.015
- Application of particle image velocimetry measurement techniques to study turbulence characteristics of oscillatory flows around parallel-plate structures in thermoacoustic devices, Measurement Science and Technology, Volume 21 (2010) no. 3, p. 035403 | DOI:10.1088/0957-0233/21/3/035403
- A critical review on advanced velocity measurement techniques in pulsating flows, Measurement Science and Technology, Volume 21 (2010) no. 4, p. 042002 | DOI:10.1088/0957-0233/21/4/042002
- , 7th International Energy Conversion Engineering Conference (2009) | DOI:10.2514/6.2009-4541
- Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions, Experimental Thermal and Fluid Science, Volume 33 (2009) no. 3, p. 495 | DOI:10.1016/j.expthermflusci.2008.11.003
- 2-D PIV measurements of oscillatory flow around parallel plates, Experiments in Fluids, Volume 46 (2009) no. 4, p. 631 | DOI:10.1007/s00348-008-0588-z
- Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness, International Journal of Thermal Sciences, Volume 48 (2009) no. 4, p. 733 | DOI:10.1016/j.ijthermalsci.2008.06.007
- PIV studies of coherent structures generated at the end of a stack of parallel plates in a standing wave acoustic field, Experiments in Fluids, Volume 45 (2008) no. 5, p. 833 | DOI:10.1007/s00348-008-0503-7
- Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry, Heat and Mass Transfer, Volume 44 (2008) no. 8, p. 1015 | DOI:10.1007/s00231-007-0316-x
- PIV Measurement of Coherent Structures and Turbulence Created by an Oscillating Flow at the End of a Thermoacoustic Stack, Progress in Turbulence II, Volume 109 (2007), p. 99 | DOI:10.1007/978-3-540-32603-8_20
- Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes, The Journal of the Acoustical Society of America, Volume 122 (2007) no. 4, p. EL122 | DOI:10.1121/1.2771370
- Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics, The Journal of the Acoustical Society of America, Volume 118 (2005) no. 4, p. 2265 | DOI:10.1121/1.2035567
- Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator, The Journal of the Acoustical Society of America, Volume 118 (2005) no. 5, p. 2993 | DOI:10.1121/1.2063087
- Numerical Simulation of Stack-Heat Exchangers Coupling in a Thermoacoustic Refrigerator, AIAA Journal, Volume 42 (2004) no. 7, p. 1338 | DOI:10.2514/1.4342
Cité par 55 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier