Comptes Rendus
Numerical model of a thermoacoustic engine
Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 18-23.

Cette étude présente un modèle numérique pour la simulation du démarrage d'un moteur thermoacoustique à onde stationnaire. Ce modèle couple une solution analytique des équations de l'acoustique linéaire dans le résonateur, avec une approximation faible Mach des équations de Navier–Stokes dans le domaine comprenant le stack et les échangeurs de chaleur. La résolution numérique de ces dernières est effectuée par un code volume-finis bidimensionnel. Les résultats obtenus montrent que le modèle reproduit bien la dynamique du processus d'amplification de l'onde, pour un coût bien inférieur à celui d'une simulation d'un écoulement compressible dans tout le moteur.

An asymptotically consistent small Mach number model of a standing wave thermoacoustic engine has been developed. A simple thermoacoustic engine consists of a resonating tube within which is inserted an acoustically compact assembly, composed of a stack of conducting plates, placed between two heat exchangers. The model couples one-dimensional linear acoustics in the resonator with a low Mach number viscous and conducting flow in the stack/heat exchangers section. The latter is solved through a two-dimensional numerical simulation. Results show that the model successfully captures the dynamics of the starting process, at a much lower cost than a fully compressible simulation of the entire engine.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.12.006
Keywords: Computational fluid dynamics, Thermoacoustics, Low Mach, Numerical simulation, Wave amplification
Mots clés : Mécanique des fluides numérique, Thermoacoustique, Faible Mach, Simulation numérique, Amplification

Omar Hireche 1 ; Catherine Weisman 1, 2 ; Diana Baltean-Carlès 1, 2 ; Patrick Le Quéré 1 ; Maurice-Xavier François 1, 2 ; Luc Bauwens 3

1 Laboratoire d'informatique pour la mécanique et les sciences de l'ingénieur, UPR CNRS 3251, BP 133, 91403 Orsay cedex, France
2 Université Pierre et Marie Curie-Paris 6, 4, place Jussieu, 75252 Paris cedex 05, France
3 University of Calgary, Department of Mechanical and Manufacturing Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
@article{CRMECA_2010__338_1_18_0,
     author = {Omar Hireche and Catherine Weisman and Diana Baltean-Carl\`es and Patrick Le Qu\'er\'e and Maurice-Xavier Fran\c{c}ois and Luc Bauwens},
     title = {Numerical model of a thermoacoustic engine},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {18--23},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2010},
     doi = {10.1016/j.crme.2009.12.006},
     language = {en},
}
TY  - JOUR
AU  - Omar Hireche
AU  - Catherine Weisman
AU  - Diana Baltean-Carlès
AU  - Patrick Le Quéré
AU  - Maurice-Xavier François
AU  - Luc Bauwens
TI  - Numerical model of a thermoacoustic engine
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 18
EP  - 23
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2009.12.006
LA  - en
ID  - CRMECA_2010__338_1_18_0
ER  - 
%0 Journal Article
%A Omar Hireche
%A Catherine Weisman
%A Diana Baltean-Carlès
%A Patrick Le Quéré
%A Maurice-Xavier François
%A Luc Bauwens
%T Numerical model of a thermoacoustic engine
%J Comptes Rendus. Mécanique
%D 2010
%P 18-23
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crme.2009.12.006
%G en
%F CRMECA_2010__338_1_18_0
Omar Hireche; Catherine Weisman; Diana Baltean-Carlès; Patrick Le Quéré; Maurice-Xavier François; Luc Bauwens. Numerical model of a thermoacoustic engine. Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 18-23. doi : 10.1016/j.crme.2009.12.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.12.006/

[1] K.W. Taconis; J.J.M. Beenakker; A.O.C. Nier; L.T. Aldrich Measurements concerning the vapour–liquid equilibrium of solutions of He3 in He4 below 2.19 K, Physica, Volume 15 (1949) no. 8–9, pp. 733-739

[2] N. Rott Damped and thermally driven acoustic oscillations in wide and narrow tubes, Z. Angew. Math. Phys., Volume 20 (1969), pp. 230-243

[3] G.W. Swift Thermoacoustic engines, J. Acoust. Soc. Am., Volume 84 (1988), pp. 1145-1180

[4] A.A. Atchley; H.E. Bass; T.J. Hofler; H.T. Lin Study of a thermoacoustic prime mover below onset of self-oscillation, J. Acoust. Soc. Am., Volume 91 (1992), pp. 734-743

[5] S. Karpov; A. Prosperetti Nonlinear saturation of the thermoacoustic instability, J. Acoust. Soc. Am., Volume 107 (2000), pp. 3130-3147

[6] V. Gusev; H. Baillet; P. Lotton; M. Bruneau Asymptotic theory of nonlinear acoustic waves in a thermoacoustic prime-mover, Acta Acustica, Volume 86 (1999), pp. 25-38

[7] M.F. Hamilton; Y.A. Ilinski; E. Zabolotskaya Nonlinear two-dimensional model for thermoacoustic engines, J. Acoust. Soc. Am., Volume 111 (2002), pp. 2076-2086

[8] G. Penelet; V. Gusev; P. Lotton; M. Bruneau Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines, Phys. Rev. E, Volume 72 (2005), p. 016625-016625-13

[9] L. Bauwens Oscillating flow of a heat-conducting fluid in a narrow tube, J. Fluid Mech., Volume 324 (1996), pp. 135-161

[10] S. Paolucci, On the filtering of sound from the Navier–Stokes equations, Sandia National Laboratories Report SAND82-8257, 1982

[11] A. Majda; J.A. Sethian The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Tech., Volume 42 (1984), pp. 185-205

[12] L. Bauwens; C.R.L. Bauwens; I. Wierzba Oscillating flames: multiple-scale analysis, Proc. R. Soc. A, Volume 465 (2009), pp. 2089-2110 | DOI

[13] C.C. Hantschk; D. Vortmeyer Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube, J. Sound Vibration, Volume 277 (1999), pp. 511-522

[14] J.A. Lycklama à Nijeholt; M.E.H. Tijani; S. Spoelstra Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics, J. Acoust. Soc. Am., Volume 118 (2005), pp. 2265-2270

[15] G.Y. Yu; E.C. Luo; W. Dai; J.Y. Hu Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics, J. Appl. Phys., Volume 102 (2007), pp. 074901-074907

[16] P. Blanc-Benon; E. Besnoin; O. Knio Experimental and computational visualization of the flow field in a thermoacoustic stack, C. R. Mecanique, Volume 331 (2003), pp. 17-24

[17] P. Duthil; C. Weisman; E. Bretagne; M.-X. François Experimental and numerical investigation of heat transfer and flow within a thermoacoustic cell, Int. J. Transp. Phenom., Volume 6 (2004), pp. 265-272

[18] P. Le Quéré; C. Weisman; H. Paillère; J. Vierendeels; E. Dick; R. Becker; M. Braack; J. Locke Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number flow, Part 1. Reference solutions, M2AN Math. Model. Numer. Anal., Volume 39 (2005), pp. 609-616

[19] W. Briggs A Multigrid Tutorial, SIAM Publications, Philadelphia, 1987

[20] P. Debesse, D. Baltean-Carlès, F. Lusseyran, Experimental analysis of nonlinear phenomena in a thermoacoustic system, in: Nonlinear Acoustics – Fundamentals and Applications, Proc. 18th ISNA, July 07–10, 2008, Stockholm, Sweden, vol. 1022, pp. 355–358

[21] C.H. Lees The free periods of a composite elastic column or composite stretched wire, Proc. Phys. Soc., Volume 41 (1929), pp. 204-213

Cité par Sources :

Commentaires - Politique