[Identification de petites inhomogénéités diélectriques à partir de mesures partielles]
Nous considérons deux problèmes d'identification de petites inhomogénéités diélectriques à partir de mesures incomplètes. Pour chaque problème, nous construisons une fonction dont la transformée de Fourier inverse permet de localiser les petites inhomogénéités.
We consider for the inverse problem of identifying locations and certain properties of the shapes of small dielectric inhomogeneities in a homogeneous background medium from boundary measurements on part of the boundary or dynamic boundary measurements for a finite time interval. Using as weights particular background solutions we develop asymptotic methods based on appropriate averaging of the data.
Accepté le :
Publié le :
Mots-clés : milieux continus, équation de Holmholtz, problème de reconstruction, petites inhomogénéités diélectriques, mesures partielles
Habib Ammari 1 ; Alexander G. Ramm 2
@article{CRMECA_2002__330_3_199_0, author = {Habib Ammari and Alexander G. Ramm}, title = {Recovery of small electromagnetic inhomogeneities from partial boundary measurements}, journal = {Comptes Rendus. M\'ecanique}, pages = {199--205}, publisher = {Elsevier}, volume = {330}, number = {3}, year = {2002}, doi = {10.1016/S1631-0721(02)01449-3}, language = {en}, }
TY - JOUR AU - Habib Ammari AU - Alexander G. Ramm TI - Recovery of small electromagnetic inhomogeneities from partial boundary measurements JO - Comptes Rendus. Mécanique PY - 2002 SP - 199 EP - 205 VL - 330 IS - 3 PB - Elsevier DO - 10.1016/S1631-0721(02)01449-3 LA - en ID - CRMECA_2002__330_3_199_0 ER -
Habib Ammari; Alexander G. Ramm. Recovery of small electromagnetic inhomogeneities from partial boundary measurements. Comptes Rendus. Mécanique, Volume 330 (2002) no. 3, pp. 199-205. doi : 10.1016/S1631-0721(02)01449-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01449-3/
[1] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal., Volume 34 (2000), pp. 723-748
[2] On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, pp. 65-73
[3] A global uniqueness theorem for an inverse boundary value problem, Ann. Math., Volume 125 (1987), pp. 153-169
[4] Comments on Calderón's paper: “On an inverse boundary value problem”, Math. Compt., Volume 52 (1989), pp. 553-559
[5] H. Ammari, S. Moskow, M. Vogelius, Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter, ESAIM: Cont. Opt. Calc. Var., to appear
[6] H. Ammari, An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume, SIAM J. Control Optim., to appear
[7] Determining conductivity by boundary measurements, Comm. Pure Appl. Math., Volume 37 (1984), pp. 289-298
[8] A.L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, Preprint
Cité par Sources :
Commentaires - Politique