We consider for the inverse problem of identifying locations and certain properties of the shapes of small dielectric inhomogeneities in a homogeneous background medium from boundary measurements on part of the boundary or dynamic boundary measurements for a finite time interval. Using as weights particular background solutions we develop asymptotic methods based on appropriate averaging of the data.
Nous considérons deux problèmes d'identification de petites inhomogénéités diélectriques à partir de mesures incomplètes. Pour chaque problème, nous construisons une fonction dont la transformée de Fourier inverse permet de localiser les petites inhomogénéités.
Accepted:
Published online:
Mots-clés : milieux continus, équation de Holmholtz, problème de reconstruction, petites inhomogénéités diélectriques, mesures partielles
Habib Ammari 1; Alexander G. Ramm 2
@article{CRMECA_2002__330_3_199_0, author = {Habib Ammari and Alexander G. Ramm}, title = {Recovery of small electromagnetic inhomogeneities from partial boundary measurements}, journal = {Comptes Rendus. M\'ecanique}, pages = {199--205}, publisher = {Elsevier}, volume = {330}, number = {3}, year = {2002}, doi = {10.1016/S1631-0721(02)01449-3}, language = {en}, }
TY - JOUR AU - Habib Ammari AU - Alexander G. Ramm TI - Recovery of small electromagnetic inhomogeneities from partial boundary measurements JO - Comptes Rendus. Mécanique PY - 2002 SP - 199 EP - 205 VL - 330 IS - 3 PB - Elsevier DO - 10.1016/S1631-0721(02)01449-3 LA - en ID - CRMECA_2002__330_3_199_0 ER -
Habib Ammari; Alexander G. Ramm. Recovery of small electromagnetic inhomogeneities from partial boundary measurements. Comptes Rendus. Mécanique, Volume 330 (2002) no. 3, pp. 199-205. doi : 10.1016/S1631-0721(02)01449-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01449-3/
[1] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal., Volume 34 (2000), pp. 723-748
[2] On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, pp. 65-73
[3] A global uniqueness theorem for an inverse boundary value problem, Ann. Math., Volume 125 (1987), pp. 153-169
[4] Comments on Calderón's paper: “On an inverse boundary value problem”, Math. Compt., Volume 52 (1989), pp. 553-559
[5] H. Ammari, S. Moskow, M. Vogelius, Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter, ESAIM: Cont. Opt. Calc. Var., to appear
[6] H. Ammari, An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume, SIAM J. Control Optim., to appear
[7] Determining conductivity by boundary measurements, Comm. Pure Appl. Math., Volume 37 (1984), pp. 289-298
[8] A.L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, Preprint
Cited by Sources:
Comments - Policy