[Identification de la vitesse de transfert de radon entre une phase liquide et une phase gazeuse]
Le transfert de radon entre une phase liquide et une phase gazeuse est modélisé par une condition de Robin (le flux de radon à l'interface commune est exprimé en fonction des concentrations de radon dans les deux phases). Cette condition implique deux constantes : le coefficient d'Ostwald (α) et la vitesse de transfert (β). En supposant que la valeur de α est connue, une méthode est proposée pour déterminer la valeur de β, en étudiant le phénomène de transfert du radon à l'échelle du laboratoire. En connaissant les concentrations initiales de radon, l'expérience consiste à mesurer la durée pendant laquelle il existe un flux de radon à travers l'interface commune. Pendant cette période de stabilisation, le transport de radon est gouverné dans chaque phase par la diffusion et la désintégration. Alors, la détermination de β équivaut à la résolution d'un problème inverse formulé en utilisant les données mesurées. Une procédure numérique est développée pour résoudre ce problème.
Radon transfer between a liquid phase and a gaseous phase is modelled by a Robin's condition (radon flux at the common interface is expressed as function of radon concentrations in the two phases). This condition involves two constants: Ostwald's coefficient (α) and the transfer velocity coefficient (β). Assuming the value of α is known, a method is proposed to determinate the value of β, by studying the radon transfer phenomenon at the laboratory scale. Knowing the initial radon concentrations, the experiment consists in measuring how long the radon flux passes through the common interface. In this stabilisation time radon transport is governed in each phase by diffusion and disintegration. Then, determination of β is equivalent to solving an inverse problem formulated using measured data. A numerical procedure is developed to solve this problem.
Accepté le :
Publié le :
Mots-clés : milieux granulaires, interface, condition Robin, radon, coefficient d'Ostwald, problème inverse
Dan-Gabriel Calugaru 1 ; Jean-Marie Crolet 1
@article{CRMECA_2002__330_5_377_0, author = {Dan-Gabriel Calugaru and Jean-Marie Crolet}, title = {Identification of radon transfer velocity coefficient between liquid and gaseous phases}, journal = {Comptes Rendus. M\'ecanique}, pages = {377--382}, publisher = {Elsevier}, volume = {330}, number = {5}, year = {2002}, doi = {10.1016/S1631-0721(02)01473-0}, language = {en}, }
TY - JOUR AU - Dan-Gabriel Calugaru AU - Jean-Marie Crolet TI - Identification of radon transfer velocity coefficient between liquid and gaseous phases JO - Comptes Rendus. Mécanique PY - 2002 SP - 377 EP - 382 VL - 330 IS - 5 PB - Elsevier DO - 10.1016/S1631-0721(02)01473-0 LA - en ID - CRMECA_2002__330_5_377_0 ER -
Dan-Gabriel Calugaru; Jean-Marie Crolet. Identification of radon transfer velocity coefficient between liquid and gaseous phases. Comptes Rendus. Mécanique, Volume 330 (2002) no. 5, pp. 377-382. doi : 10.1016/S1631-0721(02)01473-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01473-0/
[1] Gas geochemistry, Proc. of the Sec. Int. Colloq. on Gas Geochem., Sci. Rev., Northwood, 1995
[2] Physical models related to radon emission in connection with dynamic manifestations in the upper terrestrial crust: a review, Radi. Meas., Volume 28 (1997) no. 1–6, pp. 703-712
[3] Acute exposure from Rn-222 and aerosols in drinking water, Environment Int., Volume 22 (1996) no. Suppl. 1, p. S753-S759
[4] Transfer of radon and parent nuclides 238U and 234U from soils of the Mendip Hills area, England, to the water phase, J. Geochem. Explor., Volume 66 (1999), pp. 255-268
[5] Radon tracing of groundwater input into Par Pond Savanah River Site, J. Hydrology, Volume 203 (1997), pp. 209-227
[6] Numerical Analysis, Vol. 2, University Craiova, 1999
- Effect of bubble flow on radon transfer at the water–air interface: experimental studies using optical methods, Journal of Radioanalytical and Nuclear Chemistry, Volume 333 (2024) no. 3, p. 1367 | DOI:10.1007/s10967-024-09358-0
- Experimental study on radon retardation effect of modular covering floats in radon-containing water, Environmental Pollution, Volume 331 (2023), p. 121915 | DOI:10.1016/j.envpol.2023.121915
- Determination of the radon transfer velocity coefficient in water under static and turbulent conditions, Radiation Physics and Chemistry, Volume 210 (2023), p. 111057 | DOI:10.1016/j.radphyschem.2023.111057
- Experimental study of the effect of water level and wind speed on radon exhalation of uranium tailings from heap leaching uranium mines, Environmental Science and Pollution Research, Volume 26 (2019) no. 25, p. 25702 | DOI:10.1007/s11356-019-05788-6
- Study on the influence of temperature and humidity on radon exhalation from a radon-containing solution, Journal of Radioanalytical and Nuclear Chemistry, Volume 318 (2018) no. 2, p. 1099 | DOI:10.1007/s10967-018-6224-3
- Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore, Journal of Environmental Radioactivity, Volume 165 (2016), p. 219 | DOI:10.1016/j.jenvrad.2016.10.009
- Radon transfer velocity at the water–air interface, Applied Radiation and Isotopes, Volume 105 (2015), p. 144 | DOI:10.1016/j.apradiso.2015.07.058
- On-Site Radon Detection of Mining-induced Fractures from Overlying Strata to the Surface: A Case Study of the Baoshan Coal Mine in China, Energies, Volume 7 (2014) no. 12, p. 8483 | DOI:10.3390/en7128483
- Analysis of Mathematical Model for Migration Law of Radon in Underground Multilayer Strata, Mathematical Problems in Engineering, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/250852
- Dosimetry modelling of transient radon and progeny concentration peaks: results from in situ measurements in Ikaria spas, Greece, Environmental Science: Processes Impacts, Volume 15 (2013) no. 6, p. 1216 | DOI:10.1039/c3em00030c
- Modeling of the radon exhalation from water to air by a hybrid electrical circuit, Journal of Radioanalytical and Nuclear Chemistry, Volume 288 (2011) no. 3, p. 813 | DOI:10.1007/s10967-011-1003-4
- Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): Results from measurements and modelling, Science of The Total Environment, Volume 408 (2010) no. 3, p. 495 | DOI:10.1016/j.scitotenv.2009.09.057
- Modelling of radon concentration peaks in thermal spas: Application to Polichnitos and Eftalou spas (Lesvos Island—Greece), Science of The Total Environment, Volume 405 (2008) no. 1-3, p. 36 | DOI:10.1016/j.scitotenv.2008.06.029
Cité par 13 documents. Sources : Crossref
Commentaires - Politique