Un modèle 1-D de filtration en profondeur est formulé pour la déposition de fines colloı̈dales en écoulement gaz–liquide inertiel au travers de milieux poreux en régimes ruisselant et à bulles dispersées. La prédiction du dépôt résulte de la résolution des équations d'advection–dispersion des fines, de Navier–Stokes et de conservation de masse et de volume des phases. Le couplage entre fluides et milieu poreux est réalisé par adjonction de relations de fermeture exprimant les forces de cisaillement aux interfaces, le coefficient de filtration via les mécanismes de capture en mono-multicouche, et la croissance de la surface spécifique du lit.
A 1-D transient two-fluid deep-bed filtration model was formulated for the capture of colloidal fines in porous media experiencing gas–liquid trickling and dispersed bubble flow regimes. The deposit prediction resulted from solving the coupled volume-average fines' advection–dispersion, Navier–Stokes, volume and mass conservation equations for the three phases. To make the system solvable, it was augmented by auxiliary closures expressing the coupling between fluids and porous medium via the drag interfacial forces, the filter coefficient in the so-called mono- and multi-layer modes, and the growth of the specific surface area of the filter bed for liquid-solid drag.
Révisé le :
Publié le :
Keywords: granular media, gas–liquid reactors, plugging, trickling, dispersed bubbles, deep bed filtration
Ion Iliuta 1 ; Faı̈çal Larachi 1
@article{CRMECA_2002__330_8_563_0, author = {Ion Iliuta and Fa{\i}\ensuremath{\ddot{}}\c{c}al Larachi}, title = {Colmatage des r\'eacteurs gaz{\textendash}liquide \`a lit fixe}, journal = {Comptes Rendus. M\'ecanique}, pages = {563--568}, publisher = {Elsevier}, volume = {330}, number = {8}, year = {2002}, doi = {10.1016/S1631-0721(02)01500-0}, language = {fr}, }
Ion Iliuta; Faı̈çal Larachi. Colmatage des réacteurs gaz–liquide à lit fixe. Comptes Rendus. Mécanique, Volume 330 (2002) no. 8, pp. 563-568. doi : 10.1016/S1631-0721(02)01500-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01500-0/
[1] Granular Filtration of Aerosols and Hydrosols, Butterworths–Heinemann Ser. Chem. Engrg., Boston, 1989
[2] The transport equations for multi-phase systems, Chem. Engrg. Sci., Volume 28 (1973), pp. 139-147
[3] A simple model for pressure drop and liquid hold-up in packed-bed bubble reactors, Chem. Engrg. Sci., Volume 54 (1999), pp. 5139-5144
[4] I. Iliuta, B.P.A. Grandjean, F. Larachi, New mechanistic film model for pressure drop and liquid holdup in trickle flow reactors, Chem. Engrg. Sci. (2002), sous presse
[5] Loi de Darcy ou loi de Brinkman ?, C. R. Acad. Sci. Paris, Série II, Volume 292 (1981), pp. 871-874
[6] Development of volume-average theory for deep-bed filtration, AIChE J., Volume 46 (2000), pp. 1918-1926
[7] Analysis of the transient behavior of deep-bed filtration, J. Colloid Interface Sci., Volume 169 (1995), pp. 13-33
[8] Mathematical modeling of transient behaviour of deep bed filtration, Wat. Res., Volume 22 (1988), pp. 1093-1099
[9] Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model, AIChE J., Volume 22 (1976), pp. 523-533
[10] Simulation of the dynamic behavior of deep bed filters, AIChE J., Volume 25 (1979), pp. 385-395
[11] M.R. Gray, N. Srinivasan, J.H. Masliyah, Pressure buildup in gas-liquid flow through packed beds due to deposition of fine particles, Canad. J. Chem. Engrg. (2002), sous presse
Cité par Sources :
Commentaires - Politique