Comptes Rendus
Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness
[Estimation du taux de convergence des valeurs propres des plaques anisotropes, avec épaisseur variable]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 9, pp. 603-607.

On propose d'obtenir une majoration des écarts entre les valeurs propres du problème spectral d'une plaque mince élastique anisotrope et les valeurs propres du problème modèle bi-dimensionnel, par des termes qui ne dépendent que de l'épaisseur de la plaque et de la valeur propre limite correspondante.

Estimates of the differences between rescaled eigenvalues of the spectral problem for a thin anisotropic plate and eigenvalues of its two-dimensional models are obtained with bounds expressed in terms of the plate's thickness and attributes of the limit eigenvalue.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(02)01515-2
Keywords: computational solid mechanics, thin anisotropic plate, two-dimensional problem
Mots-clés : mécanique des solides numériques, plaque mince anisotrope, modèle bi-dimensional

Serguei A. Nazarov 1

1 Harrow School of Computer Science, Centre for Techno-Mathematics and Scientific Computing Laboratory, University of Westminster, London, UK
@article{CRMECA_2002__330_9_603_0,
     author = {Serguei A. Nazarov},
     title = {Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {603--607},
     publisher = {Elsevier},
     volume = {330},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01515-2},
     language = {en},
}
TY  - JOUR
AU  - Serguei A. Nazarov
TI  - Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 603
EP  - 607
VL  - 330
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01515-2
LA  - en
ID  - CRMECA_2002__330_9_603_0
ER  - 
%0 Journal Article
%A Serguei A. Nazarov
%T Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness
%J Comptes Rendus. Mécanique
%D 2002
%P 603-607
%V 330
%N 9
%I Elsevier
%R 10.1016/S1631-0721(02)01515-2
%G en
%F CRMECA_2002__330_9_603_0
Serguei A. Nazarov. Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness. Comptes Rendus. Mécanique, Volume 330 (2002) no. 9, pp. 603-607. doi : 10.1016/S1631-0721(02)01515-2. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01515-2/

[1] P.G. Ciarlet; S. Kesavan Comput. Methods Appl. Mech. Engrg., 26 (1980), pp. 149-172

[2] M. Dauge; I. Djurdjevic; E. Faou; A. Rössle J. Math. Pures Appl., 78 (1999), pp. 925-964

[3] S.A. Nazarov Siberian Math. J., 41 (2000), pp. 744-759

[4] S.A. Nazarov Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001 (in Russian)

[5] B.A. Shoikhet J. Appl. Math. Mech., 37 (1973), pp. 867-877

[6] D. Caillerie Math. Methods Appl. Sci., 2 (1984), pp. 251-270

[7] É. Sanchez-Palencia C. R. Acad. Sci. Paris, Série II, 311 (1990), pp. 909-916

[8] O.V. Motygin; S.A. Nazarov IMA J. Appl. Math., 65 (2000), pp. 1-28

[9] I. Roitberg; D. Vassiliev; T. Weidl Quart. J. Mech. Appl. Math., 51 (1998), pp. 1-13

[10] I.V. Kamotskii; S.A. Nazarov J. Math. Sci., 101 (2000), pp. 2941-2974

[11] S.A. Nazarov Math. Notes, 42 (1987), pp. 555-563

[12] P.G. Ciarlet Mathematical Elasticity. Vol. 2. Theory of Plates, North-Holland, Amsterdam, 1997

[13] I.S. Zorin; S.A. Nazarov J. Appl. Math. Mech., 53 (1989), pp. 500-507

[14] S.A. Nazarov Sb. Math., 191 (2000), pp. 1075-1106

[15] M.I. Vishik; L.A. Lyusternick Amer. Math. Soc. Transl. Ser. 2, 15 (1962), pp. 3-122

[16] S.A. Nazarov Vestnik Leningrad Univ. Math., 25 (1992), pp. 18-22

Cité par Sources :

Commentaires - Politique