[Estimations asymptotiques uniformes pour le spectre d'un problème scalaire raide]
On obtienent des estimations de la vitesse de convergence des valeurs propres, convenablement mises a l'échelle, d'un problème de Neumann raide pour l'operateur de Laplace. Des bornes correspondantes a ces estimations sont exprimées en termes du rapport des raideurs et des propriétés du spectre limite dans les rangs des fréquences basses et moyennes.
Estimates of convergence rates for rescaled eigenvalues of the stiff Neumann problem for the Laplacian are obtained. The bounds are expressed in terms of the stiffness ratio and properties of the limit spectrum both for low and middle frequency ranges.
Accepté le :
Publié le :
Mot clés : Acoustique, Ondes, Vibrations, Problème raide, Analyse spectrale, Basses fréquences, Moyennes fréquences
Miguel Lobo 1 ; Serguei A. Nazarov 2 ; Eugenia Pérez 3
@article{CRMECA_2003__331_5_325_0, author = {Miguel Lobo and Serguei A. Nazarov and Eugenia P\'erez}, title = {Asymptotically sharp uniform estimates in a scalar spectral stiff problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {325--330}, publisher = {Elsevier}, volume = {331}, number = {5}, year = {2003}, doi = {10.1016/S1631-0721(03)00073-1}, language = {en}, }
TY - JOUR AU - Miguel Lobo AU - Serguei A. Nazarov AU - Eugenia Pérez TI - Asymptotically sharp uniform estimates in a scalar spectral stiff problem JO - Comptes Rendus. Mécanique PY - 2003 SP - 325 EP - 330 VL - 331 IS - 5 PB - Elsevier DO - 10.1016/S1631-0721(03)00073-1 LA - en ID - CRMECA_2003__331_5_325_0 ER -
Miguel Lobo; Serguei A. Nazarov; Eugenia Pérez. Asymptotically sharp uniform estimates in a scalar spectral stiff problem. Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 325-330. doi : 10.1016/S1631-0721(03)00073-1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00073-1/
[1] Low and high frequency vibration in stiff problems, De Giorgi 60th birthday. Partial Differential Equations and the Calculus of Variations, Vol. II, Progr. Nonlinear Differential Equations Appl., 2, Birkhäuser, Boston, 1989, pp. 729-742
[2] High frequency viabrations in a stiff problem, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 2, pp. 291-311
[3] Asymptotics of solutions and eigenvalues of elliptic equations with strongly variable coefficients, Dokl. Akad. Nauk, Volume 252 (1980) no. 6, pp. 1320-1325 English transl.: Soviet Math. Dokl. 21 (1980) 942–947
[4] Asymptotics of the eigenvalues of elliptic equations with strongly varying coefficients, Trudy Sem. Petrovsk., Volume 12 (1987), pp. 201-217
[5] M. Lobo, S.A. Nazarov, E. Pérez, Eigenoscillations of contrastly non-homogeneous elastic body. Asymptotic and uniform estimates for the eigenvalues, in preparation
[6] Asymptotic and spectral properites of a class of singular-stiff problems, J. Math. Pures Appl., Volume 71 (1992), pp. 379-406
[7] Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg, 1989
[8] Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirck, 2002
[9] Estimating the convergence rate for eigenfrequences of anisotropic plates with variable thickness, C. R. Mecanique, Volume 330 (2002), pp. 603-607
Cité par Sources :
Commentaires - Politique