Comptes Rendus
Uniformly valid approximation for singular perturbation problems and matching principle
[Développements asymptotiques uniformément valables pour des problèmes de perturbations singulières et principe de raccordement]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 10, pp. 697-702.

Après un bref rappel de la notion de développement asymptotique, un contre-exemple du principe de raccordement de Van Dyke est levé grâce à une forme modifiée de ce principe. Ceci conduit à une approximation composite à un ordre donné. La méthode des développements successifs complémentaires proposée renverse l'analyse en partant d'une forme supposée d'une approximation uniformément valable. Cette méthode ne fait appel à aucun principe de raccordement. En fait, un tel principe apparaı̂t comme un résultat. La méthode est illustrée avec le modèle unidimensionnel souvent étudié de Stokes–Oseen pour le cylindre circulaire.

After a brief reminder of the notion of asymptotic expansion, a counter-example of the Van Dyke matching principle is solved thanks to a modified form of this principle. This leads to a composite approximation to a given order. The proposed method of successive complementary expansions reverses the analysis by starting with a supposed form of the uniformly valid approximation. This method does not require any matching principle which, in fact, is a by-product. The method is illustrated with the very often studied one-dimensional model of Stokes–Oseen for the circular cylinder.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(02)01522-X
Keywords: fluid mechanics, boundary layer, differential equations, asymptotic theory, singular perturbations
Mot clés : mécanique des fluides, couche limite, équations différentielles, théorie asymptotique, perturbations singulières

Jacques Mauss 1 ; Jean Cousteix 2, 3

1 Institut de mécanique des fluides de Toulouse UMR-CNRS et Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex, France
2 Département modèles pour l'aérodynamique et l'énergétique, ONERA, 2, avenue Édouard Belin, BP 4025, 31055 Toulouse cedex 4, France
3 École nationale supérieure de l'aéronautique et de l'espace, 10, avenue Édouard Belin, 31055 Toulouse cedex, France
@article{CRMECA_2002__330_10_697_0,
     author = {Jacques Mauss and Jean Cousteix},
     title = {Uniformly valid approximation for singular perturbation problems and matching principle},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {697--702},
     publisher = {Elsevier},
     volume = {330},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01522-X},
     language = {en},
}
TY  - JOUR
AU  - Jacques Mauss
AU  - Jean Cousteix
TI  - Uniformly valid approximation for singular perturbation problems and matching principle
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 697
EP  - 702
VL  - 330
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01522-X
LA  - en
ID  - CRMECA_2002__330_10_697_0
ER  - 
%0 Journal Article
%A Jacques Mauss
%A Jean Cousteix
%T Uniformly valid approximation for singular perturbation problems and matching principle
%J Comptes Rendus. Mécanique
%D 2002
%P 697-702
%V 330
%N 10
%I Elsevier
%R 10.1016/S1631-0721(02)01522-X
%G en
%F CRMECA_2002__330_10_697_0
Jacques Mauss; Jean Cousteix. Uniformly valid approximation for singular perturbation problems and matching principle. Comptes Rendus. Mécanique, Volume 330 (2002) no. 10, pp. 697-702. doi : 10.1016/S1631-0721(02)01522-X. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01522-X/

[1] W. Eckhaus Asymptotic Analysis of Singular Perturbations, Stud. Math. Appl, 9, North-Holland, 1979

[2] S. Kaplun; P.A. Lagerstrom Asymptotic expansions of Navier–Stokes solutions for small Reynolds numbers, J. Math. Mech, Volume 6 (1957), pp. 585-593

[3] J. Mauss On first order matching process for singular functions, Spectral Theory and Asymptotics of Differential Equations, Proceedings of the Scheveningen Conference on Differential Equations, Math. Studies, 13, North-Holland, 1974

[4] J. Mauss On matching principles, Lectures Notes in Math, 711, Springer-Verlag, 1979, pp. 1-18

[5] M. Van Dyke Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964

[6] A.H. Nayfeh Perturbation Methods, Pure Appl. Math, Wiley, 1973

[7] L.Y. Chen; N. Goldenfeld; Y. Oono Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory, Phys. Rev. E, Volume 54 (1996) no. 1, pp. 376-394

[8] E.J. Hinch Perturbation Methods. Applied Mathematics, Cambridge University Press, 1991

[9] P.A. Lagerstrom Matched Asymptotic Expansions, Ideas and Techniques, Appl. Math. Sci, 76, Springer-Verlag, 1988

[10] J. Cousteix, J. Mauss, Approximations of Navier–Stokes equations at high Reynolds number, in: S. Wang, N. Fowkes (Eds.), BAIL 2002 Conference, The University of Western Australia, Perth, 8–12 July 2002

Cité par Sources :

Commentaires - Politique