[Modélisation des solides cellulaires selon Cosserat]
Les solides cellulaires doivent leurs propriétés mécaniques directement à leur structure microcellulaire. Néanmoins, la longueur caractéristique du matériau est souvent non-négligeable comparée aux dimensions macroscopiques, ce qui limite le domaine de validité des modèles classiques, basés sur une description continue. En revanche, la théorie de Cosserat offre un cadre continu incorporant naturellement une échelle de longueur liée aux gradients de rotation. Dans cette Note nous proposons un procédé d'homogénéisation permettant de dériver, au niveau macroscopique, les équations constitutives de Cosserat, tenant compte de la morphologie de la microstructure concernée ainsi que le comportement du matériau considéré.
Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat theory, however, offers a continuum framework that naturally features a length scale related to rotation gradients. In this paper a homogenization procedure is proposed that enables the derivation of macroscopic Cosserat constitutive equations based on the underlying microstructural morphology and material behavior.
Révisé le :
Publié le :
Mots-clés : milieux continus, homogénéisation, micromécanique, théorie de Cosserat, solides cellulaires, mousses, tissus osseux, milieux continus généralisés
Patrick R. Onck 1
@article{CRMECA_2002__330_11_717_0, author = {Patrick R. Onck}, title = {Cosserat modeling of cellular solids}, journal = {Comptes Rendus. M\'ecanique}, pages = {717--722}, publisher = {Elsevier}, volume = {330}, number = {11}, year = {2002}, doi = {10.1016/S1631-0721(02)01529-2}, language = {en}, }
Patrick R. Onck. Cosserat modeling of cellular solids. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 717-722. doi : 10.1016/S1631-0721(02)01529-2. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01529-2/
[1] Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity, J. Mech. Phys. Solids, Volume 49 (2001), pp. 1361-1395
[2] Size effects in ductile cellular solids. Part I: modelling, Int. J. Mech. Sci, Volume 34 (2000), pp. 681-699
[3] Size effects in ductile cellular solids. Part II: experimental results, Int. J. Mech. Sci, Volume 34 (2000), pp. 701-713
[4] Strongly Cosserat elastic lattice and foam materials for enhanced toughness, Cellular Polymers, Volume 12 (1993), p. 17
[5] Cosserat overall modeling of heterogeneous materials, Mech. Res. Comm, Volume 25 (1998), pp. 449-454
[6] Computation of coarse grain structures using a homogeneous equivalent medium, J. Phys. IV, Volume 8 (1998), pp. 197-205
[7] A micromechanically based couple-stress model of an elastic two-phase composite, Int. J. Solids Structures, Volume 38 (2001), pp. 1721-1735
[8] An estimation of overall properties of heterogeneous Cosserat materials, J. Phys. IV, Volume 8 (1998), pp. 111-118
[9] Asymptotic analysis of heterogeneous Cosserat media, Int. J. Solids Structures, Volume 38 (2001), pp. 4585-4608
[10] On certain two-dimensional applications of the couple stress theory, Int. J. Solids Structures, Volume 4 (1968), p. 15
[11] Computational simulation of deformation behavior of 2D-lattice continuum, Int. J. Mech. Sci, Volume 40 (1998), p. 857
[12] Spring network models in elasticity and fracture of composites and polycrystals, Comput. Math. Sci, Volume 7 (1996), pp. 82-93
[13] Analogy between micropolar continuum and grid frameworks under initial stress, Int. J. Solids Structures, Volume 8 (1972), pp. 327-346
[14] Fracture analysis of cellular materials: a strain gradient model, J. Mech. Phys. Solids, Volume 46 (1998), pp. 789-828
[15] Couple-stresses in the theory of elasticity I, Proc. Kon. Nederl. Akad. Wetensch. B, Volume 67 (1964), p. 17
[16] Micromechanical definition of the strain tensor for granular materials, J. Appl. Mech, Volume 118 (1996), pp. 706-711
[17] Cosserat modelling of an elasto-viscoplastic rectangular lattice (Banhart; Fleck; Ashby, eds.), Proceedings of MetFoam 2001, Bremen, 2001
- Micropolar modeling for bending shape of 2D lattices: The case of equilateral triangular cell structure, Extreme Mechanics Letters, Volume 74 (2025), p. 102281 | DOI:10.1016/j.eml.2024.102281
- Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model, Journal of Computational Physics, Volume 519 (2024), p. 35 (Id/No 113428) | DOI:10.1016/j.jcp.2024.113428 | Zbl:7945370
- Discrete element investigation into Cosserat effects of granular materials: The measurement of couple stress and Cosserat modulus, Powder Technology, Volume 435 (2024), p. 119397 | DOI:10.1016/j.powtec.2024.119397
- Mechanical characterization of composite materials with rectangular microstructure and voids, Archive of Applied Mechanics, Volume 93 (2023) no. 1, p. 389 | DOI:10.1007/s00419-022-02142-0
- Mechanical Couplings of 3D Lattice Materials Discovered by Micropolar Elasticity and Geometric Symmetry, Journal of Applied Mechanics, Volume 90 (2023) no. 4 | DOI:10.1115/1.4056349
- Cosserat Continuum, Multiscale Multibody Dynamics (2023), p. 101 | DOI:10.1007/978-981-19-8441-9_3
- Effect of microstructural length scales on crack propagation in elastic Cosserat media, Engineering Fracture Mechanics, Volume 267 (2022), p. 108399 | DOI:10.1016/j.engfracmech.2022.108399
- Generalized macroscale model for Cosserat elasticity using generalized multiscale finite element method, Journal of Computational Physics, Volume 461 (2022), p. 23 (Id/No 111011) | DOI:10.1016/j.jcp.2022.111011 | Zbl:7525167
- On the torsion of isotropic elastoplastic Cosserat circular cylinders, Journal of Micromechanics and Molecular Physics, Volume 07 (2022) no. 01, p. 3 | DOI:10.1142/s2424913021420078
- Mechanical coupling effects of 2D lattices uncovered by decoupled micropolar elasticity tensor and symmetry operation, Journal of the Mechanics and Physics of Solids, Volume 167 (2022), p. 105012 | DOI:10.1016/j.jmps.2022.105012
- Self-moments stiffening effect and buckling strength of periodic Vierendeel beams, Acta Mechanica, Volume 232 (2021) no. 2, pp. 793-817 | DOI:10.1007/s00707-020-02854-w | Zbl:1458.74052
- A strain energy-based homogenization method for 2-D and 3-D cellular materials using the micropolar elasticity theory, Composite Structures, Volume 265 (2021), p. 113594 | DOI:10.1016/j.compstruct.2021.113594
- In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials, Mathematics and Mechanics of Solids, Volume 26 (2021) no. 7, pp. 1074-1103 | DOI:10.1177/1081286520978516 | Zbl:7582885
- Dynamic behavior of thermoelastic solid continua using mathematical model derived based on non-classical continuum mechanics with internal rotations, Meccanica, Volume 56 (2021) no. 6, pp. 1345-1375 | DOI:10.1007/s11012-020-01221-2 | Zbl:1526.74030
- A multifield continuum model for the description of the response of microporous/microcracked composite materials, Mechanics of Materials, Volume 160 (2021), p. 103965 | DOI:10.1016/j.mechmat.2021.103965
- Buckling analysis of periodic Vierendeel beams by a micro-polar homogenized model, Acta Mechanica, Volume 231 (2020) no. 6, pp. 2399-2424 | DOI:10.1007/s00707-020-02660-4 | Zbl:1436.74022
- Experimental investigation on scale effect of mechanical properties of heterogeneous micropolar medium materials, Composite Structures, Volume 251 (2020), p. 112667 | DOI:10.1016/j.compstruct.2020.112667
- Existence of rotational waves in non-classical thermoelastic solid continua incorporating internal rotations, Continuum Mechanics and Thermodynamics, Volume 32 (2020) no. 6, p. 1659 | DOI:10.1007/s00161-020-00872-6
- Material Symmetries in Homogenized Hexagonal-Shaped Composites as Cosserat Continua, Symmetry, Volume 12 (2020) no. 3, p. 441 | DOI:10.3390/sym12030441
- Multiscale modeling of material failure: Theory and computational methods, Advances in Crystals and Elastic Metamaterials, Part 2, Volume 52 (2019), p. 1 | DOI:10.1016/bs.aams.2019.04.002
- Dynamical properties of a composite microcracked bar based on a generalized continuum formulation, Continuum Mechanics and Thermodynamics, Volume 31 (2019) no. 6, p. 1627 | DOI:10.1007/s00161-019-00761-7
- Two Cosserat peridynamic models and numerical simulation of crack propagation, Engineering Fracture Mechanics, Volume 211 (2019), p. 341 | DOI:10.1016/j.engfracmech.2019.02.032
- Generalized micropolar continualization of 1D beam lattices, International Journal of Mechanical Sciences, Volume 155 (2019), p. 554 | DOI:10.1016/j.ijmecsci.2019.02.018
- Non-classical continuum theories for solid and fluent continua and some applications, International Journal of Smart and Nano Materials, Volume 10 (2019) no. 1, p. 28 | DOI:10.1080/19475411.2018.1530700
- 2D lattice material architectures for actuation, Journal of the Mechanics and Physics of Solids, Volume 124 (2019), pp. 83-101 | DOI:10.1016/j.jmps.2018.09.035 | Zbl:1474.82006
- Sensitivity to material contrast in homogenization of random particle composites as micropolar continua, Composites Part B: Engineering, Volume 136 (2018), p. 39 | DOI:10.1016/j.compositesb.2017.10.017
- Multiscale modeling and characterization of coupled damage-healing-plasticity for granular materials in concurrent computational homogenization approach, Computer Methods in Applied Mechanics and Engineering, Volume 342 (2018), pp. 354-383 | DOI:10.1016/j.cma.2018.07.030 | Zbl:1440.74085
- Compressive Failure of Fiber Composites: A Homogenized, Mesh-Independent Model, Journal of Applied Mechanics, Volume 85 (2018) no. 9 | DOI:10.1115/1.4039754
- Localization in anisotropic elastoplastic micropolar media: application to fiber reinforced composites, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), pp. 1-22 | DOI:10.1016/j.jmps.2018.05.013 | Zbl:1479.74008
- A direct technique for the homogenization of periodic beam-like structures by transfer matrix eigen-analysis, Latin American Journal of Solids and Structures, Volume 15 (2018) no. 5 | DOI:10.1590/1679-78254362
- Determining Cosserat constants of 2D cellular solids from beam models, Materials Theory, Volume 2 (2018) no. 1 | DOI:10.1186/s41313-017-0009-x
- Micromechanics of Bone Modeled as a Composite Material, Micromechanics and Nanomechanics of Composite Solids (2018), p. 281 | DOI:10.1007/978-3-319-52794-9_10
- On the homogenization of periodic beam-like structures, Procedia Structural Integrity, Volume 8 (2018), p. 399 | DOI:10.1016/j.prostr.2017.12.040
- The Multiple-Slip Mechanism of Plastic Cosserat Deformation, The Omega-Theory - A New Physics of Earthquakes, Volume 2 (2018), p. 33 | DOI:10.1016/b978-0-12-814580-7.00003-4
- Finite Element Processes Based on GM/WF in Non-Classical Solid Mechanics, American Journal of Computational Mathematics, Volume 07 (2017) no. 03, p. 321 | DOI:10.4236/ajcm.2017.73024
- A multiscale description of particle composites: From lattice microstructures to micropolar continua, Composites Part B: Engineering, Volume 128 (2017), p. 164 | DOI:10.1016/j.compositesb.2017.06.015
- Elastostatics of Lattice Materials, Dynamics of Lattice Materials (2017), p. 19 | DOI:10.1002/9781118729588.ch2
- Micro-structured materials: inhomogeneities and imperfect interfaces in plane micropolar elasticity, a boundary element approach, Engineering Analysis with Boundary Elements, Volume 83 (2017), pp. 195-203 | DOI:10.1016/j.enganabound.2017.07.023 | Zbl:1403.74067
- Study on the Size Effect of Auxetic Cellular Materials, International Journal of Applied Mechanics and Engineering, Volume 22 (2017) no. 3, p. 749 | DOI:10.1515/ijame-2017-0047
- Wave propagation in non-centrosymmetric beam-lattices with lumped masses: Discrete and micropolar modeling, International Journal of Solids and Structures, Volume 118-119 (2017), p. 128 | DOI:10.1016/j.ijsolstr.2017.04.010
- Homogenization of a Vierendeel girder with elastic joints into an equivalent polar beam, Journal of Mechanics of Materials and Structures, Volume 12 (2017) no. 4, p. 485 | DOI:10.2140/jomms.2017.12.485
- A quest for 2D lattice materials for actuation, Journal of the Mechanics and Physics of Solids, Volume 105 (2017), pp. 199-216 | DOI:10.1016/j.jmps.2017.05.007 | Zbl:1442.74053
- Periodic beam-like structures homogenization by transfer matrix eigen-analysis: A direct approach, Mechanics Research Communications, Volume 85 (2017), p. 81 | DOI:10.1016/j.mechrescom.2017.08.007
- Scaling to RVE in Random Media, Volume 49 (2016), p. 111 | DOI:10.1016/bs.aams.2016.07.001
- A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua, Generalized Continua as Models for Classical and Advanced Materials, Volume 42 (2016), p. 425 | DOI:10.1007/978-3-319-31721-2_20
- Mixed FEM–Crushable DEM Nested Scheme in Second-Order Computational Homogenization for Granular Materials, International Journal of Geomechanics, Volume 16 (2016) no. 5 | DOI:10.1061/(asce)gm.1943-5622.0000627
- Simplified modelling of chiral lattice materials with local resonators, International Journal of Solids and Structures, Volume 83 (2016), p. 126 | DOI:10.1016/j.ijsolstr.2016.01.005
- Micropolar Constitutive Relations for Cellular Solids, Journal of Applied Mechanics, Volume 83 (2016) no. 4 | DOI:10.1115/1.4032115
- Advances in Multiscale Modeling of Granular Materials, Materials with Internal Structure (2016), p. 63 | DOI:10.1007/978-3-319-21494-8_5
- Modelling of metal foams by a modified elastic law, Mechanics of Materials, Volume 101 (2016), p. 61 | DOI:10.1016/j.mechmat.2016.07.007
- Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 472 (2016) no. 2188, p. 20150801 | DOI:10.1098/rspa.2015.0801
- Optimum design of lattice structures based on continuum expression using micropolar continuum theory, Transactions of the JSME (in Japanese), Volume 82 (2016) no. 840, p. 16-00171 | DOI:10.1299/transjsme.16-00171
- A new version of Hill's lemma for Cosserat continuum, Archive of Applied Mechanics, Volume 85 (2015) no. 6, pp. 761-773 | DOI:10.1007/s00419-015-0988-5 | Zbl:1348.74288
- Scale-dependent homogenization of random composites as micropolar continua, European Journal of Mechanics - A/Solids, Volume 49 (2015), p. 396 | DOI:10.1016/j.euromechsol.2014.08.010
- On a possibility of reconstruction of Cosserat moduli in particulate materials using long waves, Acta Mechanica, Volume 225 (2014) no. 8, pp. 2409-2422 | DOI:10.1007/s00707-014-1132-2 | Zbl:1302.74045
- A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials, Computational Mechanics, Volume 54 (2014) no. 5, pp. 1331-1356 | DOI:10.1007/s00466-014-1062-9 | Zbl:1311.74125
- A beam specimen to measure the face/core fracture toughness of sandwich materials under a tearing loading mode, International Journal of Mechanical Sciences, Volume 79 (2014), p. 84 | DOI:10.1016/j.ijmecsci.2013.12.002
- Computational homogenization of cellular materials, International Journal of Solids and Structures, Volume 51 (2014) no. 11-12, p. 2183 | DOI:10.1016/j.ijsolstr.2014.02.029
- Particulate random composites homogenized as micropolar materials, Meccanica, Volume 49 (2014) no. 11, p. 2719 | DOI:10.1007/s11012-014-0031-x
- Hill's lemma for the average-field theory of Cosserat continuum, Acta Mechanica, Volume 224 (2013) no. 4, pp. 851-866 | DOI:10.1007/s00707-012-0790-1 | Zbl:1401.74235
- Elasticity and Viscoelasticity of Open Cellular Material: Micromechanical Approach, Design and Modeling of Mechanical Systems (2013), p. 531 | DOI:10.1007/978-3-642-37143-1_64
- Micromechanical approach for the behaviour of open cell foams, European Journal of Computational Mechanics, Volume 22 (2013) no. 2-4, p. 198 | DOI:10.1080/17797179.2013.820979
- A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán plates and beams, Journal of the Mechanics and Physics of Solids, Volume 61 (2013) no. 3, p. 873 | DOI:10.1016/j.jmps.2012.10.008
- Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method, Computational Mechanics, Volume 50 (2012) no. 4, pp. 413-431 | DOI:10.1007/s00466-012-0681-2 | Zbl:1386.74117
- Construction of micropolar continua from the asymptotic homogenization of beam lattices, Computers Structures, Volume 112-113 (2012), p. 354 | DOI:10.1016/j.compstruc.2012.08.006
- Uncertainty quantification for metal foam structures by means of image analysis, Probabilistic Engineering Mechanics, Volume 28 (2012), p. 143 | DOI:10.1016/j.probengmech.2011.08.015
- From Lattice Models to Extended Continua, Advances in Extended and Multifield Theories for Continua, Volume 59 (2011), p. 19 | DOI:10.1007/978-3-642-22738-7_2
- Macrohomogeneity condition in dynamics of micropolar media, Archive of Applied Mechanics, Volume 81 (2011) no. 7, pp. 899-906 | DOI:10.1007/s00419-010-0456-1 | Zbl:1271.74019
- A micro-macro homogenization approach for discrete particle assembly - Cosserat continuum modeling of granular materials, International Journal of Solids and Structures, Volume 47 (2010) no. 2, pp. 291-303 | DOI:10.1016/j.ijsolstr.2009.09.033 | Zbl:1183.74042
- A Generalized Continuum Formulation for Composite Microcracked Materials and Wave Propagation in a Bar, Journal of Applied Mechanics, Volume 77 (2010) no. 6 | DOI:10.1115/1.4001639
- Kinematics and dynamics of fault reactivation: The Cosserat approach, Journal of Structural Geology, Volume 32 (2010) no. 1, p. 15 | DOI:10.1016/j.jsg.2009.06.008
- A version of Hill's lemma for Cosserat continuum, Acta Mechanica Sinica, Volume 25 (2009) no. 4, pp. 499-506 | DOI:10.1007/s10409-009-0231-0 | Zbl:1178.74135
- Genesis of the multiscale approach for materials with microstructure, Archive of Applied Mechanics, Volume 79 (2009) no. 11, pp. 981-997 | DOI:10.1007/s00419-008-0269-7 | Zbl:1184.74007
- Numerical investigations of foam-like materials by nested high-order finite element methods, Computational Mechanics, Volume 45 (2009) no. 1, pp. 45-59 | DOI:10.1007/s00466-009-0414-3 | Zbl:1398.74402
- Homogenisation of periodic Cosserat media, International Journal of Computer Applications in Technology, Volume 34 (2009) no. 1, p. 60 | DOI:10.1504/ijcat.2009.022703
- Effective couple-stress continuum model of cellular solids and size effects analysis, International Journal of Solids and Structures, Volume 46 (2009) no. 14-15, pp. 2787-2799 | DOI:10.1016/j.ijsolstr.2009.03.007 | Zbl:1167.74538
- A micropolar theory for the finite elasticity of open-cell cellular solids, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 465 (2009) no. 2103, pp. 843-865 | DOI:10.1098/rspa.2008.0267 | Zbl:1186.74022
- Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models, Journal of the Mechanics and Physics of Solids, Volume 56 (2008) no. 12, pp. 3541-3564 | DOI:10.1016/j.jmps.2008.06.007 | Zbl:1171.74411
- Finite element methods for micropolar models of granular materials, Applied Mathematical Modelling, Volume 30 (2006) no. 10, pp. 1043-1055 | DOI:10.1016/j.apm.2005.05.016 | Zbl:1163.74556
- Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, European Journal of Mechanics. A. Solids, Volume 25 (2006) no. 3, pp. 526-549 | DOI:10.1016/j.euromechsol.2005.11.006 | Zbl:1094.74047
- Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network, Journal of Biomechanics, Volume 39 (2006) no. 12, p. 2241 | DOI:10.1016/j.jbiomech.2005.07.006
- Quasi-static punch indentation of a honeycomb sandwich plate: experiments and modelling, Journal of Mechanics of Materials and Structures, Volume 1 (2006) no. 3, p. 581 | DOI:10.2140/jomms.2006.1.581
- Modeling macroscopic extended continua with the aid of numerical homogenization schemes, Computational Materials Science, Volume 32 (2005) no. 3-4, p. 337 | DOI:10.1016/j.commatsci.2004.09.034
- From Lattices and Composites to Micropolar Continua, Micromechanics and Nanoscale Effects, Volume 10 (2004), p. 175 | DOI:10.1007/978-94-007-1013-9_7
Cité par 84 documents. Sources : Crossref, zbMATH
Commentaires - Politique