Comptes Rendus
Establishment of strain gradient constitutive relations by homogenization
Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 235-244.

Dans cette Note, nous décrivons une méthodologie dʼhomogénéisation dans le but dʼétablir des lois de comportement au gradient de déformation pour les matériaux hétérogènes. La méthodologie présentée comporte deux étapes. La première étape est la construction de la densité moyenne dʼénergie de déformation pour un Volume Élémentaire Représentatif (VER) en utilisant une technique dʼhomogénéisation. La deuxième est de transformer cette densité moyenne obtenue pour un VER en celle valable pour un milieu continu. Cette transformation permet de garantir que les modules effectifs généralisés ne dépendent pas de la taille du VER mais seulement des tailles intrinsèques des constituants. Elle garantit également que les modules du second ordre sʼannulent si le contraste entre les propriétés des constituants disparaît. Ces aspects sont illustrés ensuite par un exemple simple.

In this Note, we describe a homogenization methodology with the aim of establishing strain gradient constitutive relations for heterogeneous materials. The presented methodology includes two main steps. The first one is the construction of the average strain-energy density for a well-chosen Representative Volume Element (RVE) by using a homogenization technique. The second one is the transformation of the obtained average strain-energy density to that of the continuum. This transformation permits to ensure that the effective moduli do not depend on the size of an RVE, but only on the intrinsic size of the components. It also ensures that the moduli related to the strain gradient vanish as the contrast between the components disappears. These features were then illustrated by means of a simple example.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2011.02.002
Keywords: Mechanisms, Strain gradient theory, Homogenization, Constitutive equations
Mots clés : Mécanismes, Théorie au gradient de déformation, Homogénéisation, Équations constitutives
Jia Li 1

1 LPMTM, CNRS UPR 9001, Université Paris XIII, 99, avenue Jean-Baptiste-Clément, 93430 Villetaneuse, France
@article{CRMECA_2011__339_4_235_0,
     author = {Jia Li},
     title = {Establishment of strain gradient constitutive relations by homogenization},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {235--244},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2011},
     doi = {10.1016/j.crme.2011.02.002},
     language = {en},
}
TY  - JOUR
AU  - Jia Li
TI  - Establishment of strain gradient constitutive relations by homogenization
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 235
EP  - 244
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2011.02.002
LA  - en
ID  - CRMECA_2011__339_4_235_0
ER  - 
%0 Journal Article
%A Jia Li
%T Establishment of strain gradient constitutive relations by homogenization
%J Comptes Rendus. Mécanique
%D 2011
%P 235-244
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crme.2011.02.002
%G en
%F CRMECA_2011__339_4_235_0
Jia Li. Establishment of strain gradient constitutive relations by homogenization. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 235-244. doi : 10.1016/j.crme.2011.02.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.02.002/

[1] J. Lemaitre; J.L. Chaboche Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990

[2] G. Pijaudier-Cabot; Z.P. Bazant Nonlocal damage theory, J. Engng. Mech., ASCE, Volume 113 (1987), pp. 1512-1533

[3] E. Aifantis On the microstructual origin of certain inelastic models, J. Engng. Mat. Technol., Volume 106 (1984), pp. 326-330

[4] N.A. Fleck; J.W. Hutchinson A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, Volume 41 (1993), pp. 1825-1857

[5] W.D. Nix; H. Gao Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids, Volume 46 (1998), pp. 411-425

[6] R. Peerlings; M. Geers; R. de Borst; W. Brekelmans A critical comparison of non-local and gradient-enhanced softening continua, Int. J. Solids Struct., Volume 38 (2001), pp. 7723-7746

[7] G. Pijaudier-Cabot; N. Burlion Damage and localization in elastic materials with voids, Mech. Cohesive-Frictional Mat., Volume 1 (1996), pp. 129-144

[8] J. Li A strain gradient model for fracture prediction in brittle materials, J. Appl. Mech., ASME, Volume 75 (2008), pp. 1-9

[9] M. Frémond; B. Nedjar Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., Volume 33 (1996), pp. 1083-1103

[10] G. Francfort; J.-J. Marigo Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, Volume 46 (1998), pp. 1319-1342

[11] W.J. Drugan Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1359-1387

[12] W.J. Drugan; J.R. Willis A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, Volume 44 (1996), pp. 497-524

[13] C. Boutin Micro-structural effects in elastic composites, Int. J. Struct. Solids, Volume 33 (1996), pp. 1023-1051

[14] N. Triantafyllidis; S. Bardenhagen The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models, J. Mech. Phys. Solids, Volume 44 (1996), pp. 1891-1928

[15] M.G.D. Geers; V. Kouznetsova; W.A.M. Brekelmans Gradient-enhanced computational homogenization for the micro–macro scale transition, J. Phys. IV, Volume 11 (2001), pp. 145-152

[16] V.G. Kouznetsova; M.G.D. Geers; W.A.M. Brekelmans Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Engrg., Volume 193 (2004), pp. 5525-5550

[17] M. Gologanu; J.B. Leblond; G. Perrin; J. Devaux Recent extensions of Gursonʼs model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, CISM Lecture Notes, Springer-Verlag, New York, 1997, pp. 61-130

[18] A. Anthoine Second-order homogenisation of functionally graded materials, Int. J. Solids Struct., Volume 47 (2010), pp. 1477-1489

[19] S. Forest; F. Pradel; K. Sab Asymptotic analysis of heterogeneous Cosserat media, Int. J. Struct. Solids, Volume 38 (2001), pp. 4585-4608

[20] S. Forest; K. Sab Cosserat overall modeling of heterogeneous materials, Mech. Res. Comm., Volume 25 (1998) no. 4, pp. 449-454

[21] F. Bouyge; I. Jasiuk; S. Boccara; M. Ostoja-Starzewski A micromechanically based couple-stress model of an elastic orthotropic two-phase composite, Eur. J. Mech. A/Solids, Volume 21 (2002), pp. 465-481

[22] D. Bigoni; W.J. Drugan Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials, J. Appl. Mech. Tran. ASME, Volume 77 (2007), pp. 741-753

[23] R. Hill Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, Volume 11 (1963), pp. 357-372

[24] Z.P. Bazant; T. Belytschko; T.P. Chang Continuum theory for strain-softening, J. Eng. Mech., Div. ASCE, Volume 110 (1984), pp. 1666-1692

[25] J.F.W. Bishop; R. Hill A theory of the plastic distortion of polycrystalline aggregate under combined stresses, Phil. Mag., Volume 42 (1951), pp. 414-427

[26] N.A. Fleck; J.W. Hutchinson A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, Volume 41 (1993), pp. 1825-1857

[27] P.M. Suquet Elements of homogenization for inelastic solid mechanics (E. Sanchez-Palencia; A. Zaoui, eds.), Homogenization Techniques for Composite Media, Lecture Notes in Physics, vol. 272, Springer-Verlag, Berlin, 1987, pp. 193-278

[28] R.D. Mindlin Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., Volume 1 (1965), pp. 417-438

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves

Filip Nikolić; Marko Čanađija

C. R. Méca (2023)


A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials

Qi-zhi Zhu; Jian-fu Shao; Djimedo Kondo

C. R. Méca (2008)


Sur la fermeture des termes rapides pour des écoulements moyens rotationnels

Jean Piquet

C. R. Méca (2003)