[Modélisation micromécanique des milieux poreux déformables]
Un principe de Terzaghi modifié est proposé pour décrire les phénomènes électro-chimico-mécaniques couplés dans des argiles gonflantes fortement compactées. Le modèle à deux échelles utilise la méthode de l'homogénéisation pour un système diphasique composé de particules d'argile saturées par une solution aqueuse d'un sel complètement dissocié. Quelques résultats numériques illustrent les résultats dans un cas particulier.
A modified Terzaghi principle is proposed to describe the influence of locally coupled electro-chemo-mechanical processes in highly compacted swelling clays upon the form of the macroscopic modified effective stress principle. The two-scale model is derived using the homogenization procedure to upscale the microscopic behavior of a two-phase system composed of clay particles saturated by a completely dissociated electrolyte aqueous solution. Numerical experiments are performed to illustrate the results in a particular cell geometry.
Accepté le :
Publié le :
Mot clés : milieux poreux, argiles expansives, contrainte effective, homogénéisation, Poisson–Boltzmann, pression de (disjonction) gonflement
Márcio A. Murad 1 ; Christian Moyne 2
@article{CRMECA_2002__330_12_865_0, author = {M\'arcio A. Murad and Christian Moyne}, title = {Micromechanical computational modeling of expansive porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {865--870}, publisher = {Elsevier}, volume = {330}, number = {12}, year = {2002}, doi = {10.1016/S1631-0721(02)01543-7}, language = {en}, }
Márcio A. Murad; Christian Moyne. Micromechanical computational modeling of expansive porous media. Comptes Rendus. Mécanique, Volume 330 (2002) no. 12, pp. 865-870. doi : 10.1016/S1631-0721(02)01543-7. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01543-7/
[1] Introduction to Modern Colloid Science, Oxford University Press, 1994
[2] An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists, Wiley, New York, 1977
[3] Surface Forces, Plenum Press, New York, 1987
[4] Structural component of the swelling pressure of clays, Langmuir, Volume 3 (1987), pp. 18-25
[5] Influence of particle orientation on one-dimensional compression of montmorillonite, Colloid Interface Sci, Volume 194 (1997), pp. 44-52
[6] Mechanisms controlling volume change of saturated clays and the role of the effective stress concept, Geotechnique, Volume 23 (1973) no. 3, pp. 359-382
[7] Quadriphasic mechanics of swelling incompressible porous media, Int. J. Engrg. Sci, Volume 25 (1997) no. 8, pp. 793-802
[8] A macroscopic model of the swelling phenomenon of a saturated clay, European J. Mech. A Solids, Volume 14 (1995) no. 6, pp. 981-1004
[9] Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960
[10] Non-Homogeneous Media and Vibration Theory, Lectures Notes in Phys, Springer-Verlag, 1980
[11] Geomaterials: Constitutive Equations and Modeling (F. Darve, ed.), Elsevier, New York, 1990, pp. 311-328
Cité par Sources :
Commentaires - Politique