Comptes Rendus
Piezo-ElectroMechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers
[Structures Piézo-ÉlectroMécaniques (PEM) : contrôle passif de vibrations en utilisant des transducteurs piézo-électriques distribués]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 69-76.

Une structure piézo-électromécanique (PEM) se compose par un élément structurel hôte, une rangée uniformément distribuée de transducteurs piézoélectriques et un circuit électronique passif (agissant comme contrôleur) pour établir leur interconnexion électrique. Un tel circuit doit être conçu pour assurer la transduction la plus efficace de l'énergie mécanique en électrique. Les circuits nécessaires sont synthétisés pour des barres, des poutres et des plaques et les performances des structures PEM correspondantes sont déterminées. Une fois que des éléments dissipatifs appropriés sont inclus dans le contrôleur on montre que dans les structures PEM les vibrations mécaniques sont atténuées le plus efficacement possible.

A piezo-electromechanical structural member is composed of a host member, a uniformly distributed array of piezoelectric transducers and a passive electric circuit (acting as a controller) interconnecting their electric terminals. Such a circuit has to be designed to assure the most efficient transduction of mechanical into electrical energy. The needed circuits are synthesized for bars, beams and plates and the performances of the corresponding PEM structures are determined. Once suitable dissipative elements are included in the controller, it is proven that, in PEM structures, mechanical vibrations are the most efficiently damped.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(03)00022-6
Keywords: Control, Electric analog, Electric networks, Vibration damping
Mots-clés : Automatique, Vibrations, Analogue électrique, Réseaux électriques, Amortissement de vibrations

Francesco dell'Isola 1 ; Maurizio Porfiri 2 ; Stefano Vidoli 1

1 Dipartimento Ingegneria Strutturale e Geotecnica, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Rome, Italy
2 Dottorato in Meccanica Teorica ed Applicata, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Rome, Italy
@article{CRMECA_2003__331_1_69_0,
     author = {Francesco dell'Isola and Maurizio Porfiri and Stefano Vidoli},
     title = {Piezo-ElectroMechanical {(PEM)} structures: passive vibration control using distributed piezoelectric transducers},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {69--76},
     publisher = {Elsevier},
     volume = {331},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00022-6},
     language = {en},
}
TY  - JOUR
AU  - Francesco dell'Isola
AU  - Maurizio Porfiri
AU  - Stefano Vidoli
TI  - Piezo-ElectroMechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 69
EP  - 76
VL  - 331
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00022-6
LA  - en
ID  - CRMECA_2003__331_1_69_0
ER  - 
%0 Journal Article
%A Francesco dell'Isola
%A Maurizio Porfiri
%A Stefano Vidoli
%T Piezo-ElectroMechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers
%J Comptes Rendus. Mécanique
%D 2003
%P 69-76
%V 331
%N 1
%I Elsevier
%R 10.1016/S1631-0721(03)00022-6
%G en
%F CRMECA_2003__331_1_69_0
Francesco dell'Isola; Maurizio Porfiri; Stefano Vidoli. Piezo-ElectroMechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 69-76. doi : 10.1016/S1631-0721(03)00022-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00022-6/

[1] A. Preumont Vibration Control of Active Structures, Kluwer Academic, Dordrecht, 1997

[2] A. Preumont Responsive Systems for Active Vibration Control, Kluwer Academic, Dordrecht, 2002

[3] H.-F. Olsen Electronic control of noise, vibration and reverberation, J. Acoust. Soc., Volume 28 (1956), pp. 972-976

[4] R.-L. Forward; G.-J. Swigert Electronic damping of orthogonal bending modes in a cylindrical mast-theory, J. Spacecraft Rockets, Volume 18 (1981), pp. 5-10

[5] N.-W. Hagood; A. von Flotow Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib., Volume 146 (1991), pp. 243-268

[6] J.-P. den Hartog Mechanical Vibrations, McGraw-Hill, New York, 1934

[7] L.-T. Bruton RC-Active Circuits: Theory and Design, Prentice-Hall, 1980

[8] S. Vidoli; F. dell'Isola Modal coupling in one-dimensional electromechanical structured continua, Acta Mech., Volume 141 (2000), pp. 37-50

[9] S. Alessandroni; F. dell'Isola; M. Porfiri A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators, Int. J Solids Structures, Volume 39-20 (2002), pp. 5295-5324

[10] C. Maurini, F. dell'Isola, D. del Vescovo, Comparison of distributed vibration absorbers made of piezo-electr(on)ic networks, Mech. Systems Signal Process., to appear

[11] F. dell'Isola; S. Vidoli Bending-waves damping in truss beams by electrical transmission line with PZT actuators, Arch. Appl. Mech., Volume 68 (1998), pp. 626-636

[12] F. dell'Isola, E.-G. Henneke, M. Porfiri, Synthesis of electrical networks interconnecting PZT actuators to damp mechanical vibrations, Int. J. Appl. Electromagnet. Mech., to appear

[13] U. Andreaus, F. dell'Isola, M. Porfiri, Piezoelectric passive distributed controllers for beam flexural vibrations, J. Vib. Control, to appear

[14] S. Vidoli; F. dell'Isola Vibration control in plates by uniformly distributed actuators interconnected via electric networks, Eur. J. Mech. A Solids, Volume 20 (2001), pp. 435-456

[15] S. Alessandroni, F. dell'Isola, F. Frezza, Optimal piezo-mechanical coupling to control plate vibrations, Int. J. Appl. Electromagnet. Mech., to appear

[16] S. Alessandroni, U. Andreaus, F. dell'Isola, A novel-passive electric-network analog to Kirchhoff–Love plate designed to efficiently damp forced vibrations by distributed piezoelectric transducers, Int. J. Engrg. Sci., to appear

[17] F. dell'Isola; S. Vidoli Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping, Arch. Appl. Mech., Volume 68 (1998), pp. 1-19

  • Alan Luo; Boris Lossouarn; Alper Erturk Multimodal vibration damping of a three-dimensional circular ring coupled to analogous piezoelectric networks, Journal of Sound and Vibration, Volume 581 (2024), p. 118385 | DOI:10.1016/j.jsv.2024.118385
  • Alan Luo; Boris Lossouarn; Alper Erturk Analogous piezoelectric network for multimodal vibration attenuation of a thin circular ring, Smart Materials and Structures, Volume 32 (2023) no. 11, p. 115024 | DOI:10.1088/1361-665x/ad0139
  • Laihu Peng; Yubao Qi; Yaosen Zhong; Yuan Sun; Xin Ru Needle selector failure detection based on piezoelectric sensor and driver co-location characteristics, Textile Research Journal, Volume 93 (2023) no. 5-6, p. 1371 | DOI:10.1177/00405175221133572
  • Arnaldo Casalotti; Francesco D’Annibale On the effectiveness of a rod-like distributed piezoelectric controller in preventing the Hopf bifurcation of the visco-elastic Beck’s beam, Acta Mechanica, Volume 233 (2022) no. 5, p. 1819 | DOI:10.1007/s00707-022-03185-8
  • Alberto M Bersani; Antonio Cazzani; Ivan Giorgio; Mario Spagnuolo Maestro and his pupils: History of a scientific production, Mathematics and Mechanics of Solids, Volume 27 (2022) no. 10, p. 1876 | DOI:10.1177/10812865221108096
  • A. Casalotti; F. D’Annibale On the effects of a beam-like piezoelectric passive controller on the linear stability of the visco-elastic Beck’s beam, Mechanics Research Communications, Volume 125 (2022), p. 103980 | DOI:10.1016/j.mechrescom.2022.103980
  • Arnaldo Casalotti; Francesco D'Annibale A rod‐like piezoelectric controller for the improvement of the visco‐elastic Beck's beam linear stability, Structural Control and Health Monitoring, Volume 29 (2022) no. 2 | DOI:10.1002/stc.2865
  • Francesco D’Annibale; Manuel Ferretti On the effects of linear damping on the nonlinear Ziegler’s column, Nonlinear Dynamics, Volume 103 (2021) no. 4, p. 3149 | DOI:10.1007/s11071-020-05797-y
  • Abdelmoody M. Abd-Alla; Said M. Abo-Dahab; Abo-el-nour N. Abd-alla; Mohamed Elsagheer Plane Waves Transmission and Reflection at the Interface Between Thermoelastic Continua in Absence of Dissipation: The Influence of Magnetic Field and Rotation, Developments and Novel Approaches in Biomechanics and Metamaterials, Volume 132 (2020), p. 235 | DOI:10.1007/978-3-030-50464-9_14
  • Ugo Andreaus; Ivan Giorgio Variational Principles in Numerical Practice, Encyclopedia of Continuum Mechanics (2020), p. 2662 | DOI:10.1007/978-3-662-55771-6_175
  • Ivan Giorgio A discrete formulation of Kirchhoff rods in large-motion dynamics, Mathematics and Mechanics of Solids, Volume 25 (2020) no. 5, p. 1081 | DOI:10.1177/1081286519900902
  • Ugo Andreaus; Ivan Giorgio Variational Principles in Numerical Practice, Encyclopedia of Continuum Mechanics (2018), p. 1 | DOI:10.1007/978-3-662-53605-6_175-1
  • Victor A. Eremeyev; Francesco dell’Isola; Claude Boutin; David Steigmann Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions, Journal of Elasticity, Volume 132 (2018) no. 2, p. 175 | DOI:10.1007/s10659-017-9660-3
  • Boris Lossouarn; Mathieu Aucejo; Jean-François Deü; Kenneth A Cunefare Design of a passive electrical analogue for piezoelectric damping of a plate, Journal of Intelligent Material Systems and Structures, Volume 29 (2018) no. 7, p. 1301 | DOI:10.1177/1045389x17731232
  • Edgar A. Flores Parra; Andrea Bergamini; Bart Van Damme; Paolo Ermanni Controllable wave propagation of hybrid dispersive media with LC high-pass and band-pass networks, Applied Physics Letters, Volume 110 (2017) no. 18 | DOI:10.1063/1.4983088
  • Angela Madeo; Alessandro Della Corte; Ivan Giorgio; Daria Scerrato Modeling and designing micro- and nano-structured metamaterials: Towards the application of exotic behaviors, Mathematics and Mechanics of Solids, Volume 22 (2017) no. 4, p. 873 | DOI:10.1177/1081286515616036
  • Victor Eremeyev; Holm Altenbach Basics of Mechanics of Micropolar Shells, Shell-like Structures, Volume 572 (2017), p. 63 | DOI:10.1007/978-3-319-42277-0_2
  • A. V. Nasedkin; V. A. Eremeyev Some Models for Nanosized Magnetoelectric Bodies with Surface Effects, Advanced Materials, Volume 175 (2016), p. 373 | DOI:10.1007/978-3-319-26324-3_27
  • Holm Altenbach; Victor A. Eremeyev On the Variational Analysis of Vibrations of Prestressed Six-Parameter Shells, Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials, Volume 49 (2016), p. 3 | DOI:10.1007/978-3-319-04265-7_1
  • Ugo Andreaus; Paolo Casini Identification of multiple open and fatigue cracks in beam-like structures using wavelets on deflection signals, Continuum Mechanics and Thermodynamics, Volume 28 (2016) no. 1-2, p. 361 | DOI:10.1007/s00161-015-0435-4
  • G Pepe; A Carcaterra; I Giorgio; D Del Vescovo Variational Feedback Control for a nonlinear beam under an earthquake excitation, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 10, p. 1234 | DOI:10.1177/1081286514562878
  • Ugo Andreaus; Maurizio De Angelis Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints, Nonlinear Dynamics, Volume 84 (2016) no. 3, p. 1447 | DOI:10.1007/s11071-015-2581-4
  • Xinchun Xie; Dongyu Xu; Xiaojing Guo; Fei Sha; Shifeng Huang Nonlinear Ultrasonic Nondestructive Evaluation of Damaged Concrete Based on Embedded Piezoelectric Sensors, Research in Nondestructive Evaluation, Volume 27 (2016) no. 3, p. 125 | DOI:10.1080/09349847.2015.1012247
  • B Lossouarn; J-F Deü; M Aucejo; K A Cunefare Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network, Smart Materials and Structures, Volume 25 (2016) no. 11, p. 115042 | DOI:10.1088/0964-1726/25/11/115042
  • Angelo Luongo; Manuel Ferretti; Francesco D’Annibale Paradoxes in dynamic stability of mechanical systems: investigating the causes and detecting the nonlinear behaviors, SpringerPlus, Volume 5 (2016) no. 1 | DOI:10.1186/s40064-016-1684-9
  • M.S. Kozień; Ł. Ścisło Simulation of Control Algorithm for Active Reduction of Transversal Vibrations of Beams by Piezoelectric Elements Based on Identification of Bending Moment, Acta Physica Polonica A, Volume 128 (2015) no. 1A, p. A-56 | DOI:10.12693/aphyspola.128.a-56
  • Alberto M. Bersani; Enrico Bersani; Guido Dell’Acqua; Morten G. Pedersen New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper, Continuum Mechanics and Thermodynamics, Volume 27 (2015) no. 4-5, p. 659 | DOI:10.1007/s00161-014-0367-4
  • L. Greco; M. Cuomo Consistent tangent operator for an exact Kirchhoff rod model, Continuum Mechanics and Thermodynamics, Volume 27 (2015) no. 4-5, p. 861 | DOI:10.1007/s00161-014-0361-x
  • F.C.L. Borges; D.A. Castello; C. Magluta; F.A. Rochinha; N. Roitman An experimental assessment of internal variables constitutive models for viscoelastic materials, Mechanical Systems and Signal Processing, Volume 50-51 (2015), p. 27 | DOI:10.1016/j.ymssp.2014.04.023
  • Wan Hong; Jian Zhang; Gang Wu; Zhishen Wu Comprehensive comparison of macro-strain mode and displacement mode based on different sensing technologies, Mechanical Systems and Signal Processing, Volume 50-51 (2015), p. 563 | DOI:10.1016/j.ymssp.2014.05.011
  • Francesco D’Annibale; Giuseppe Rosi; Angelo Luongo On the failure of the ‘Similar Piezoelectric Control’ in preventing loss of stability by nonconservative positional forces, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 4, p. 1949 | DOI:10.1007/s00033-014-0477-7
  • Holm Altenbach; Victor A. Eremeyev Vibration Analysis of Non-linear 6-parameter Prestressed Shells, Meccanica, Volume 49 (2014) no. 8, p. 1751 | DOI:10.1007/s11012-013-9845-1
  • Noah T. Jafferis; James C. Sturm Fundamental and Experimental Conditions for the Realization of Traveling-Wave-Induced Aerodynamic Propulsive Forces by Piezoelectrically Deformed Plastic Substrates, Journal of Microelectromechanical Systems, Volume 22 (2013) no. 2, p. 495 | DOI:10.1109/jmems.2012.2228164
  • A. Carcaterra New concepts in damping generation and control: theoretical formulation and industrial applications, Variational Models and Methods in Solid and Fluid Mechanics, Volume 535 (2011), p. 249 | DOI:10.1007/978-3-7091-0983-0_6
  • Giuseppe Rosi; Joël Pouget; Francesco dell’Isola Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode, European Journal of Mechanics - A/Solids, Volume 29 (2010) no. 5, p. 859 | DOI:10.1016/j.euromechsol.2010.02.014
  • Fabrizio Vestroni; Stefano Vidoli Damage detection with auxiliary subsystems, Dynamic Methods for Damage Detection in Structures, Volume 499 (2008), p. 211 | DOI:10.1007/978-3-211-78777-9_9
  • S. Alessandroni; U. Andreaus; F. dell’Isola; M. Porfiri A passive electric controller for multimodal vibrations of thin plates, Computers Structures, Volume 83 (2005) no. 15-16, p. 1236 | DOI:10.1016/j.compstruc.2004.08.028
  • Sidney B. Lang Guide to the Literature of Piezoelectricity and Pyroelectricity. 23, Ferroelectrics, Volume 321 (2005) no. 1, p. 91 | DOI:10.1080/00150190500259707
  • F dell Isola; C Maurini; M Porfiri Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation, Smart Materials and Structures, Volume 13 (2004) no. 2, p. 299 | DOI:10.1088/0964-1726/13/2/008

Cité par 39 documents. Sources : Crossref

Commentaires - Politique