[Un modèle homogénéisé de réaction–diffusion dans un milieu poreux]
On étudie le problème aux limites pour l'équation de réaction–diffusion
We study the initial boundary value problem for the reaction–diffusion equation,
Accepté le :
Publié le :
Mots-clés : Mécanique des solides numérique, Équation de réaction–diffusion, Modèle homogénéisé, Effet de mémoire
Leonid Pankratov 1, 2 ; Andrey Piatnitskii 3, 4 ; Volodymyr Rybalko 1
@article{CRMECA_2003__331_4_253_0, author = {Leonid Pankratov and Andrey Piatnitskii and Volodymyr Rybalko}, title = {Homogenized model of reaction{\textendash}diffusion in a porous medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {253--258}, publisher = {Elsevier}, volume = {331}, number = {4}, year = {2003}, doi = {10.1016/S1631-0721(03)00060-3}, language = {en}, }
TY - JOUR AU - Leonid Pankratov AU - Andrey Piatnitskii AU - Volodymyr Rybalko TI - Homogenized model of reaction–diffusion in a porous medium JO - Comptes Rendus. Mécanique PY - 2003 SP - 253 EP - 258 VL - 331 IS - 4 PB - Elsevier DO - 10.1016/S1631-0721(03)00060-3 LA - en ID - CRMECA_2003__331_4_253_0 ER -
Leonid Pankratov; Andrey Piatnitskii; Volodymyr Rybalko. Homogenized model of reaction–diffusion in a porous medium. Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 253-258. doi : 10.1016/S1631-0721(03)00060-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00060-3/
[1] Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981
[2] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Appl. Math., Volume 21 (1990), pp. 823-826
[3] Modèle de double porosité aléatoire, C. R. Acad. Sci. Paris, Sér. I, Volume 327 (1998), pp. 99-104
[4] A general double porosity model, C. R. Acad. Sci. Paris, Sér. IIb, Volume 327 (1999), pp. 1245-1250
[5] Homogenization and Porous Media (U. Hornung, ed.), Interdisciplinary Appl. Math., 6, Springer-Verlag, New York, 1997
[6] Nonlinear “double porosity” type model, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 435-440
[7] Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992
[8] An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496
[9] Homogenization and two scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[10] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973
- Discrete double-porosity models for spin systems, Mathematics and Mechanics of Complex Systems, Volume 4 (2016) no. 1, p. 79 | DOI:10.2140/memocs.2016.4.79
- Simulation of local transfer in periodic porous media, European Journal of Mechanics - B/Fluids, Volume 37 (2013), p. 174 | DOI:10.1016/j.euromechflu.2012.09.006
- Homogenization of boundary value problems for monotone operators in perforated domains with rapidly oscillating boundary conditions of Fourier type, Journal of Mathematical Sciences (New York), Volume 177 (2011) no. 1, pp. 109-140 | DOI:10.1007/s10958-011-0450-3 | Zbl:1290.35019
- A diffusion equation through a highly heterogeneous medium, Applicable Analysis, Volume 89 (2010) no. 6, pp. 893-904 | DOI:10.1080/00036811003717962 | Zbl:1192.35017
- Multiscale Modelling of Chemical Degradation Mechanisms in Porous Media with Evolving Microstructure, Multiscale Modeling Simulation, Volume 7 (2009) no. 4, p. 1643 | DOI:10.1137/070706410
- Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Mathematical Methods in the Applied Sciences, Volume 31 (2008) no. 11, pp. 1257-1282 | DOI:10.1002/mma.966 | Zbl:1154.35008
- Homogenization of a reaction-diffusion equation with Robin interface conditions, Applied Mathematics Letters, Volume 19 (2006) no. 11, pp. 1175-1179 | DOI:10.1016/j.aml.2005.04.021 | Zbl:1180.35064
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier