[Un modèle homogénéisé de réaction–diffusion dans un milieu poreux]
On étudie le problème aux limites pour l'équation de réaction–diffusion
We study the initial boundary value problem for the reaction–diffusion equation,
Accepté le :
Publié le :
Mots-clés : Mécanique des solides numérique, Équation de réaction–diffusion, Modèle homogénéisé, Effet de mémoire
Leonid Pankratov 1, 2 ; Andrey Piatnitskii 3, 4 ; Volodymyr Rybalko 1
@article{CRMECA_2003__331_4_253_0, author = {Leonid Pankratov and Andrey Piatnitskii and Volodymyr Rybalko}, title = {Homogenized model of reaction{\textendash}diffusion in a porous medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {253--258}, publisher = {Elsevier}, volume = {331}, number = {4}, year = {2003}, doi = {10.1016/S1631-0721(03)00060-3}, language = {en}, }
TY - JOUR AU - Leonid Pankratov AU - Andrey Piatnitskii AU - Volodymyr Rybalko TI - Homogenized model of reaction–diffusion in a porous medium JO - Comptes Rendus. Mécanique PY - 2003 SP - 253 EP - 258 VL - 331 IS - 4 PB - Elsevier DO - 10.1016/S1631-0721(03)00060-3 LA - en ID - CRMECA_2003__331_4_253_0 ER -
Leonid Pankratov; Andrey Piatnitskii; Volodymyr Rybalko. Homogenized model of reaction–diffusion in a porous medium. Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 253-258. doi : 10.1016/S1631-0721(03)00060-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00060-3/
[1] Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981
[2] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Appl. Math., Volume 21 (1990), pp. 823-826
[3] Modèle de double porosité aléatoire, C. R. Acad. Sci. Paris, Sér. I, Volume 327 (1998), pp. 99-104
[4] A general double porosity model, C. R. Acad. Sci. Paris, Sér. IIb, Volume 327 (1999), pp. 1245-1250
[5] Homogenization and Porous Media (U. Hornung, ed.), Interdisciplinary Appl. Math., 6, Springer-Verlag, New York, 1997
[6] Nonlinear “double porosity” type model, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 435-440
[7] Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992
[8] An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496
[9] Homogenization and two scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[10] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973
- Discrete double-porosity models for spin systems, Mathematics and Mechanics of Complex Systems, Volume 4 (2016) no. 1, p. 79 | DOI:10.2140/memocs.2016.4.79
- Simulation of local transfer in periodic porous media, European Journal of Mechanics - B/Fluids, Volume 37 (2013), p. 174 | DOI:10.1016/j.euromechflu.2012.09.006
- A diffusion equation through a highly heterogeneous medium, Applicable Analysis, Volume 89 (2010) no. 6, p. 893 | DOI:10.1080/00036811003717962
- Multiscale Modelling of Chemical Degradation Mechanisms in Porous Media with Evolving Microstructure, Multiscale Modeling Simulation, Volume 7 (2009) no. 4, p. 1643 | DOI:10.1137/070706410
- Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Mathematical Methods in the Applied Sciences, Volume 31 (2008) no. 11, p. 1257 | DOI:10.1002/mma.966
- Homogenization of a reaction–diffusion equation with Robin interface conditions, Applied Mathematics Letters, Volume 19 (2006) no. 11, p. 1175 | DOI:10.1016/j.aml.2005.04.021
Cité par 6 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier