[Modèles non linéaires de type double-porosité à croissance non standart]
Nous étudions les solutions d'équations quasilinéaires elliptiques à coefficients fortement contrastés. La formulation variationnelle associée conduit à travailler dans des espaces de Lebesgue à exposant variable
We study the solutions to quasilinear elliptic equations with high contrast coefficients. The energy formulation leads to work with variable exponent Lebesgue spaces
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Homogénéisation, Double porosité, Croissance non standard
Catherine Choquet 1 ; Leonid Pankratov 2
@article{CRMECA_2009__337_9-10_659_0, author = {Catherine Choquet and Leonid Pankratov}, title = {Nonlinear double porosity models with non-standard growth}, journal = {Comptes Rendus. M\'ecanique}, pages = {659--666}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.004}, language = {en}, }
Catherine Choquet; Leonid Pankratov. Nonlinear double porosity models with non-standard growth. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 659-666. doi : 10.1016/j.crme.2009.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.004/
[1] Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000
[2] Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259
[3] Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., Volume 66 (2006) no. 4, pp. 1383-1406
[4] Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Prikl. Mat. Mech., Volume 24 (1960) no. 5, pp. 1286-1303
[5] Homogenization and Porous Media, Interdisciplinary Applied Mathematics, vol. 6, Springer, 1997
[6] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Appl. Math. Anal., Volume 21 (1990), pp. 823-836
[7] Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media, Proc. Roy. Soc. Edinburgh Sect. A, Volume 136 (2006), pp. 1131-1155
[8] Derivation of the double porosity model of a compressible miscible displacement in naturally fractured reservoirs, Appl. Anal., Volume 83 (2004), pp. 477-500
[9] A general double porosity model, C. R. Math. Acad. Sci. Paris Ser. IIb, Volume 327 (1999), pp. 1245-1250
[10] On the double porosity model of a single phase flow in random media, Asympt. Anal., Volume 327 (2003), pp. 311-332
[11] Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006
[12] Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Handbook of Differential Equations, vol. 3, Stationary Partial Differential Equations, Elsevier, 2006 (Chapter 1, pp. 1–100)
[13] An extension theorem from connected sets, and homogenization in general periodic domains, J. Nonlinear Anal., Volume 18 (1992), pp. 481-496
[14] Regularity for a more general class of quasi-linear elliptic equations, J. Diff. Equations, Volume 51 (1984), pp. 126-150
- Homogenization in Sobolev Spaces with Nonstandard Growth: Brief Review of Methods and Applications, International Journal of Differential Equations, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/693529
Cité par 1 document. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier