Comptes Rendus
Homogenized model of reaction–diffusion in a porous medium
Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 253-258.

We study the initial boundary value problem for the reaction–diffusion equation,

tuϵ-·(aϵuϵ)+g(uϵ)=hϵ
in a bounded domain Ω with periodic microstructure (ϵ)¯(ϵ), where aε(x) is of order 1 in (ϵ) and κ(ε) in (ϵ) with κ(ε)→0 as ε→0. Combining the method of two-scale convergence and the variational homogenization we obtain effective models which depend on the parameter θ=limε→0κ(ε)/ε2. In the case of strictly positive finite θ the effective problem is nonlocal in time that corresponds to the memory effect.

On étudie le problème aux limites pour l'équation de réaction–diffusion

tuϵ-·(aϵuϵ)+g(uϵ)=hϵ
dans un ouvert borné Ω avec une microstructure périodique (ϵ)¯(ϵ), où aε(x) vaut 1 dans (ϵ) et κ(ε) dans (ϵ) avec κ(ε)→0 quand ε→0. En combinant la méthode de convergence à double échelle et l'homogénéisation variationnelle, on obtient des modèles macroscopiques qui dépendent du paramètre θ=limε→0κ(ε)/ε2. Lorsque θ est strictement positif et fini, le problème macroscopique est non local en temps ce qui correspond à l'effet de mémoire.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-0721(03)00060-3
Keywords: Computational solid mechanics, Reaction–diffusion equation, Homogenised model, Memory effect
Mot clés : Mécanique des solides numérique, Équation de réaction–diffusion, Modèle homogénéisé, Effet de mémoire

Leonid Pankratov 1, 2; Andrey Piatnitskii 3, 4; Volodymyr Rybalko 1

1 Département de mathématiques, B.Verkin Institut des Basses Températures (FTINT), 47, av. Lénine, 61103, Kharkov, Ukraine
2 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, pl. Jussieu 75252 Paris cedex 05, France
3 Narvik University College, HiN, 8505, Narvik, Norway
4 Lebedev Physical Institute RAS, 53, Leninski prospect, 117333, Moscow, Russia
@article{CRMECA_2003__331_4_253_0,
     author = {Leonid Pankratov and Andrey Piatnitskii and Volodymyr Rybalko},
     title = {Homogenized model of reaction{\textendash}diffusion in a porous medium},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {253--258},
     publisher = {Elsevier},
     volume = {331},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00060-3},
     language = {en},
}
TY  - JOUR
AU  - Leonid Pankratov
AU  - Andrey Piatnitskii
AU  - Volodymyr Rybalko
TI  - Homogenized model of reaction–diffusion in a porous medium
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 253
EP  - 258
VL  - 331
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00060-3
LA  - en
ID  - CRMECA_2003__331_4_253_0
ER  - 
%0 Journal Article
%A Leonid Pankratov
%A Andrey Piatnitskii
%A Volodymyr Rybalko
%T Homogenized model of reaction–diffusion in a porous medium
%J Comptes Rendus. Mécanique
%D 2003
%P 253-258
%V 331
%N 4
%I Elsevier
%R 10.1016/S1631-0721(03)00060-3
%G en
%F CRMECA_2003__331_4_253_0
Leonid Pankratov; Andrey Piatnitskii; Volodymyr Rybalko. Homogenized model of reaction–diffusion in a porous medium. Comptes Rendus. Mécanique, Volume 331 (2003) no. 4, pp. 253-258. doi : 10.1016/S1631-0721(03)00060-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00060-3/

[1] D. Henry Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981

[2] T. Arbogast; J. Douglas; U. Hornung Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Appl. Math., Volume 21 (1990), pp. 823-826

[3] A. Bourgeat; A. Mikelic; A. Piatnitski Modèle de double porosité aléatoire, C. R. Acad. Sci. Paris, Sér. I, Volume 327 (1998), pp. 99-104

[4] A. Bourgeat; M. Goncharenko; M. Panfilov; L. Pankratov A general double porosity model, C. R. Acad. Sci. Paris, Sér. IIb, Volume 327 (1999), pp. 1245-1250

[5] Homogenization and Porous Media (U. Hornung, ed.), Interdisciplinary Appl. Math., 6, Springer-Verlag, New York, 1997

[6] L. Pankratov; A. Piatnitski Nonlinear “double porosity” type model, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 435-440

[7] A.V. Babin; M.J. Vishik Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992

[8] E. Acerbi; V. Chiadò Piat; G. Dal Maso; D. Percival An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496

[9] G. Allaire Homogenization and two scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518

[10] O.A. Ladyzhenskaya; N.N. Ural'tseva Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973

Cited by Sources:

Comments - Policy