Comptes Rendus
On the geometrically exact formulation of structural mechanics and its applications to dynamics, control and optimization
Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 383-394.

In this survey paper we re-examine the theoretical formulation of structural mechanics, introducing no restrictions with respect to the size of displacements, rotations or deformations, which is commonly referred to as geometrically exact. A special attention is given to clarifying the computational aspects of finite rotations as the key ingredient of any such formulation. We briefly discuss several novel applications of the geometrically exact formulation to dynamics, control and optimization.

Dans cet article nous réexaminons la formulation théorique de la mécanique des structures n'imposant aucune restriction sur la grandeur des déplacements, des rotations ou des déformations, qui est alors dite géométriquement exacte. Une attention pariculière est portée aux aspects du calcul pertinents aux rotations finies, dont la maı̂trise représente un élément clé pour toute formulation de ce type. Nous présentons brièvement quelques applications nouvelles de le théorie géométriquement exacte en dynamique, en contrôle et en optimisation.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-0721(03)00062-7
Keywords: Solids and structures, Finite rotation, Dynamics, Control, Optimization
Mot clés : Solides et structures, Rotation finie, Dynamique, Contrôle, Optimisation

Adnan Ibrahimbegovic 1

1 École normale supérieure de Cachan, LMT-Cachan, 61, av. du président Wilson, 94235 Cachan, France
@article{CRMECA_2003__331_5_383_0,
     author = {Adnan Ibrahimbegovic},
     title = {On the geometrically exact formulation of structural mechanics and its applications to dynamics, control and optimization},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {383--394},
     publisher = {Elsevier},
     volume = {331},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00062-7},
     language = {en},
}
TY  - JOUR
AU  - Adnan Ibrahimbegovic
TI  - On the geometrically exact formulation of structural mechanics and its applications to dynamics, control and optimization
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 383
EP  - 394
VL  - 331
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00062-7
LA  - en
ID  - CRMECA_2003__331_5_383_0
ER  - 
%0 Journal Article
%A Adnan Ibrahimbegovic
%T On the geometrically exact formulation of structural mechanics and its applications to dynamics, control and optimization
%J Comptes Rendus. Mécanique
%D 2003
%P 383-394
%V 331
%N 5
%I Elsevier
%R 10.1016/S1631-0721(03)00062-7
%G en
%F CRMECA_2003__331_5_383_0
Adnan Ibrahimbegovic. On the geometrically exact formulation of structural mechanics and its applications to dynamics, control and optimization. Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 383-394. doi : 10.1016/S1631-0721(03)00062-7. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00062-7/

[1] K. Hjelmstad Fundamentals of Structural Mechanics, Prentice-Hall, New York, 1997

[2] K.J. Bathe Finite Element Procedures, Prentice-Hall, New Jersey, 1996

[3] M.A. Crisfield Nonlinear Finite Element Analysis of Solids and Structures, Wiley, 1997

[4] E. Riessner On finite deformations of space-curved beams, J. Appl. Math. Phys., Volume 32 (1981), pp. 734-744

[5] J.C. Simo A finite-strain beam formulation. The three-dimensional dynamic problem. Part I, Comput. Methods Appl. Mech. Engrg., Volume 49 (1985), pp. 55-70

[6] A. Ibrahimbegovic Finite element implementation of Reissner's geometrically nonlinear beam theory: three-dimensional curved beam finite elements, Comput. Methods Appl. Mech. Engrg., Volume 122 (1995), pp. 10-26

[7] A. Ibrahimbegovic Stress resultant geometrically nonlinear shell theory with drilling rotations. Part 1: A consistent formulation, Comput. Methods Appl. Mech. Engrg., Volume 118 (1994), pp. 265-284

[8] A. Ibrahimbegovic Finite elastic eeformations and finite rotations of 3d continuum with independent rotation field, Revue européenne élém. finis, Volume 4 (1995), pp. 555-576

[9] J. Argyris An excursion into large rotations, Comput. Methods Appl. Mech. Engrg., Volume 32 (1982), pp. 85-155

[10] S.N. Atluri; A. Cazzani Rotation in computational solid mechanics, Arch. Comp. Mech., Volume 2 (1995), pp. 49-138

[11] N. Buechter; E. Ramm Shell theory versus degeneration – a comparison in large rotation finite element analysis, Int. J. Numer. Methods Engrg., Volume 34 (1992), pp. 39-59

[12] M. Geradin; D. Rixen Parametrization of finite rotations in computational dynamics, Revue européenne élém. finis, Volume 4 (1995), pp. 497-554

[13] W.C. Hassenplug Rotation angles, Comput. Methods Appl. Mech. Engrg., Volume 105 (1993), pp. 111-124

[14] A. Ibrahimbegovic; F. Frey; I. Kozar Computational aspects of vector-like parameterization of three-dimensional finite rotations, Int. J. Numer. Methods Engrg., Volume 38 (1995), pp. 3653-3673

[15] A. Ibrahimbegovic On the choice of finite rotation parameters, Comput. Methods Appl. Mech. Engrg., Volume 149 (1997), pp. 49-71

[16] J.C. Simo; L. Vu-Quoc Three-dimensional finite strain model. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., Volume 38 (1986), pp. 79-118

[17] J.C. Simo The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: intrinsic definition and geometric interpretation, Comput. Methods Appl. Mech. Engrg., Volume 96 (1992), pp. 183-200

[18] A. Ibrahimbegovic; R.L. Taylor Nonlinear dynamics of flexible multibody systems, Comp. Structures, Volume 81 (2003), pp. 1113-1132

[19] A. Ibrahimbegovic; P. Villon; C. Knopf-Lenoir Optimal control of structures undergoing finite rotations, Int. J. Numer. Methods Engrg., Volume 58 (2003) (in press)

[20] A. Ibrahimbegovic; C. Knopf-Lenoir Shape optimization of elastic structural systems undergoing large rotations: Simultaneous solution procedure, Int. J. Comput. Model. Engrg. Sci., Volume 5 (2003) (in press)

[21] J.E. Marsden; T.J.R. Hughes Mathematical Foundations of Elasticity, Dover, New York, 1994

[22] P. Germain Cours de mécanique de l'École Polytechnique, Tome 1, Ellipses, Paris, 1986

[23] J. Green; H. Zerna Theoretical Elasticity, Dover, New York, 1992

[24] C. Truesdell; W. Noll The Non-Linear Field Theories, Springer, Berlin, 1965

[25] P.G. Ciarlet Mathematical Elasticity, North-Holland, 1988

[26] O.C. Zienkiewicz; R.L. Taylor The Finite Element Method. Vols. I–III, Butterworth–Heinemann, Oxford, 2000

[27] J.F. Bourgat; P. Le Tallec; S. Mani Modélisation et calcul des grands déplacements de tuyaux élastiques en flexion–torsion, J. Méc., Volume 7 (1988), pp. 379-408

[28] M.A. Crisfield; G. Jelenic Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, Proc. Roy. Soc. London Ser. A, Volume 455 (1999), pp. 1125-1147

[29] A. Ibrahimbegovic; H. Shakourzadeh; J.L. Batoz; M. Almikdad; Y.Q. Guo On the role of geometrically exact and second order theories in buckling and post-buckling analysis of three-dimensional beam structures, Comp. Structures, Volume 61 (1996), pp. 1101-1114

[30] J.C. Simo; N. Tarnow; M. Doblare Nonlinear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithm, Int. J. Numer. Methods Engrg., Volume 38 (1995), pp. 1431-1473

[31] A. Ibrahimbegovic; R.L. Taylor On the role of frame-invariance of structural mechanics models at finite rotations, Comput. Methods Appl. Mech. Engrg., Volume 191 (2002), pp. 5159-5176

[32] B.N. Fraeijs de Veubeke The dynamics of flexible bodies, Int. J. Engrg. Sci., Volume 14 (1976), pp. 895-913

[33] T.R. Kane; D.A. Levinson Dynamics: Theory and Applications, McGraw-Hill, New York, 1985

[34] A. Ibrahimbegovic; S. Mamouri Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of 3d beams undergoing finite rotations, Comput. Methods Appl. Mech. Engrg., Volume 191 (2002), pp. 4241-4258

[35] A. Ibrahimbegovic; A. Delaplace Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle materials, Comp. Structures, Volume 81 (2003), pp. 1255-1265

[36] P.G. Ciarlet Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, 1990

[37] W.C. Rheinboldt Numerical Analysis of Parameterized Nonlinear Equations, Wiley, London, 1986

[38] A. Ibrahimbegovic; M. Almikdad Quadratically convergent direct calculation of critical points for 3d structures undergoing finite rotations, Comput. Methods Appl. Mech. Engrg., Volume 189 (2000), pp. 107-120

[39] J. Argyris; G. Faust; M. Haase An Exploration of Chaos, North-Holland, Amsterdam, 1994

[40] E. Hairier; G. Wanner Solving Ordinary Differential Equations: Stiff and Differential-Algebraic Problems, Springer, Berlin, 1991

[41] M. Kleiber; H. Antunez; T.D. Hein; P. Kowalczyk Parameter Sensitivity in Nonlinear Mechanics; Theory and Finite Element Computations, Wiley, 1997

[42] B. Rousselet A finite strain rod model and its design sensitivity, Mech. Struct. Mach., Volume 20 (1992), pp. 413-432

[43] B. Brank; J. Korelc; A. Ibrahimbegovic Nonlinear shell problem formulation accouning for through-the-thickness stretching and its finite element implementation, Comput. Stuctures, Volume 80 (2002), pp. 699-717

[44] B. Brank; J. Korelc; A. Ibrahimbegovic Dynamics and time-integration for elastic shells undergoing finite rotations, Comput. Stuctures, Volume 81 (2003), pp. 1193-1210

Cited by Sources:

Comments - Policy