Comptes Rendus
Bearing capacity of strip footings with horizontal confinement
[La capacité portante des fondations superficielles en présence de parois rigides]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 319-324.

La présence de parois rigides au voisinage d'une fondation superficielle influe sur la capacité portante de cette fondation. On étudie ce problème dans le cas d'un sol cohérent sans frottement interne en supposant que le contact avec les parois est soit parfaitement rugueux soit sans frottement. En mettant en œuvre l'approche cinématique du calcul à la rupture avec des champs de vitesse virtuels inspirés de l'étude de l'extrusion inverse, on détermine des bornes supérieures pour le facteur de correction à appliquer au coefficient classique de capacité portante, en fonction du paramètre géométrique adimensionnel du problème. Dans le cas des parois rugueuses, la nouvelle borne supérieure se révèle significativement meilleure que celles disponibles jusqu'alors. Une relation simple est établie qui permet d'obtenir la borne supérieure pour les parois lisses à partir de celle valable pour les parois rugueuses. En conclusion de l'analyse, il apparaı̂t que, pour les valeurs du paramètre géométrique réalistes du point de vue de la pratique, l'accroissement de capacité portante dû à la présence des parois rigides demeure faible.

For a strip footing under axial loading, the bearing capacity is influenced by the presence of rigid walls confining the foundation soil. This problem is investigated within the framework of the theory of yield design, considering both a perfectly rough and a frictionless contact condition at the interfaces with the walls in the case of a purely cohesive soil. Upper bounds for the correction factor to be applied to the classical value of the bearing capacity are determined, as functions of the non-dimensional geometric parameter of the problem, through the kinematic approach, implementing virtual velocity fields inspired from the solution to the problem of inverted extrusion. In the perfectly rough case, it appears that the new upper bound is a significant improvement of those already available. A very simple relationship is established, which derives the upper bound for the frictionless walls from the upper bound for the rough walls. A general conclusion of the analysis is that, for the values of the geometric parameter that are likely to be encountered in practice, the increase in the bearing capacity due to the presence of the rigid walls remains very small.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(03)00071-8
Keywords: Soils, Bearing capacity, Confinement, Extrusion, Foundation, Yield design
Mot clés : Sols, Calcul à la rupture, Extrusion, Fondation, Force portante

Jean Salençon 1

1 École polytechnique, laboratoire de mécanique des solides, 91128 Palaiseau cedex, France
@article{CRMECA_2003__331_5_319_0,
     author = {Jean Salen\c{c}on},
     title = {Bearing capacity of strip footings with horizontal confinement},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {319--324},
     publisher = {Elsevier},
     volume = {331},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00071-8},
     language = {en},
}
TY  - JOUR
AU  - Jean Salençon
TI  - Bearing capacity of strip footings with horizontal confinement
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 319
EP  - 324
VL  - 331
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00071-8
LA  - en
ID  - CRMECA_2003__331_5_319_0
ER  - 
%0 Journal Article
%A Jean Salençon
%T Bearing capacity of strip footings with horizontal confinement
%J Comptes Rendus. Mécanique
%D 2003
%P 319-324
%V 331
%N 5
%I Elsevier
%R 10.1016/S1631-0721(03)00071-8
%G en
%F CRMECA_2003__331_5_319_0
Jean Salençon. Bearing capacity of strip footings with horizontal confinement. Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 319-324. doi : 10.1016/S1631-0721(03)00071-8. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00071-8/

[1] J. Salençon The influence of confinement on the bearing capacity of strip footings, C. R. Mecanique, Volume 330 (2002), pp. 319-326

[2] J. Salençon An introduction to the yield design theory and its applications to soil mechanics, Eur. J. Mech. A, Volume 9 (1990) no. 5, pp. 477-500

[3] R. Hill The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950 (pp. 182–184)

[4] H. Geiringer Some recent results in the theory of an ideal plastic body, Adv. Appl. Mech., Academic Press, New York, 1953, pp. 197-294

[5] A.P. Green On the use of hodographs in problems of plane plastic strain, J. Mech. Phys. Solids, Volume 2 (1954) no. 2, pp. 73-80

[6] J.F.W. Bishop On the complete solution to problems of deformation of a plastic rigid material, J. Mech. Phys. Solids, Volume 2 (1953) no. 1, pp. 43-53

[7] D.J.F. Ewing; R. Hill The plastic constraint of V. notched tension bars, J. Mech. Phys. Solids, Volume 15 (1967) no. 2, pp. 115-124

[8] A.M. Puzrin; M.F. Randolph Generalized framework for the three-dimensional upper bound limit analysis in a Tresca material, J. Appl. Mech., Volume 70 (2003) no. 1, pp. 91-100

Cité par Sources :

Commentaires - Politique