[Limite d'homogénéisation pour la conduction électrique dans les tissus biologiques dans le domaine des radiofréquences]
On étudie un modèle d'évolution pour la conduction électrique dans les tissus biologiques, où les espaces conducteurs intracellulaires et extracellulaires sont séparés par des membranes cellulaires isolantes. Le schéma mathématique est celui d'un problème elliptique avec des conditions aux limites dynamiques sur les membranes des cellules. Le problème est formulé dans un milieu périodique finement mixte. On démontre que la limite d'homogénéisation u0 du potentiel électrique, obtenue pour une période de la structure microscopique approchant de zéro, est solution de l'équation
We study an evolutive model for electrical conduction in biological tissues, where the conductive intra-cellular and extracellular spaces are separated by insulating cell membranes. The mathematical scheme is an elliptic problem, with dynamical boundary conditions on the cell membranes. The problem is set in a finely mixed periodic medium. We show that the homogenization limit u0 of the electric potential, obtained as the period of the microscopic structure approaches zero, solves the equation
Accepté le :
Publié le :
Mots-clés : Mécanique des milieux continus, Conduction électrique, Homogénéisation, Biomathématique
Micol Amar 1 ; Daniele Andreucci 1 ; Paolo Bisegna 2 ; Roberto Gianni 1
@article{CRMECA_2003__331_7_503_0, author = {Micol Amar and Daniele Andreucci and Paolo Bisegna and Roberto Gianni}, title = {Homogenization limit for electrical conduction in biological tissues in the radio-frequency range}, journal = {Comptes Rendus. M\'ecanique}, pages = {503--508}, publisher = {Elsevier}, volume = {331}, number = {7}, year = {2003}, doi = {10.1016/S1631-0721(03)00107-4}, language = {en}, }
TY - JOUR AU - Micol Amar AU - Daniele Andreucci AU - Paolo Bisegna AU - Roberto Gianni TI - Homogenization limit for electrical conduction in biological tissues in the radio-frequency range JO - Comptes Rendus. Mécanique PY - 2003 SP - 503 EP - 508 VL - 331 IS - 7 PB - Elsevier DO - 10.1016/S1631-0721(03)00107-4 LA - en ID - CRMECA_2003__331_7_503_0 ER -
%0 Journal Article %A Micol Amar %A Daniele Andreucci %A Paolo Bisegna %A Roberto Gianni %T Homogenization limit for electrical conduction in biological tissues in the radio-frequency range %J Comptes Rendus. Mécanique %D 2003 %P 503-508 %V 331 %N 7 %I Elsevier %R 10.1016/S1631-0721(03)00107-4 %G en %F CRMECA_2003__331_7_503_0
Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni. Homogenization limit for electrical conduction in biological tissues in the radio-frequency range. Comptes Rendus. Mécanique, Volume 331 (2003) no. 7, pp. 503-508. doi : 10.1016/S1631-0721(03)00107-4. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00107-4/
[1] Dielectric properties tissues and biological materials: a critical review, Crit. Rev. Biomed. Engrg., Volume 17 (1989), pp. 25-104
[2] The Biomedical Engineering Handbook, CRC Press, 1999
[3] Étude de l'influence d'un glissement entre les constituants d'un matériau composite sur ses coefficients de comportement effectifs, J. Méc., Volume 20 (1981), pp. 509-536
[4] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, to appear
[5] Non Homogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, 1980
[6] Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978
[7] Introduction á l'analyse numérique des équations aux dérivées partielles, Masson, Paris, 1983
- A model for the bio-mechanical stimulus in bone remodelling as a diffusive signalling agent for bones reconstructed with bio-resorbable grafts, Mechanics Research Communications, Volume 129 (2023), p. 104094 | DOI:10.1016/j.mechrescom.2023.104094
- A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling, Symmetry, Volume 14 (2022) no. 11, p. 2436 | DOI:10.3390/sym14112436
- Well-posedness of two pseudo-parabolic problems for electrical conduction in heterogeneous media, Journal of Mathematical Analysis and Applications, Volume 493 (2021) no. 2, p. 18 (Id/No 124533) | DOI:10.1016/j.jmaa.2020.124533 | Zbl:1451.35075
- Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 3, p. 31 (Id/No 99) | DOI:10.1007/s00526-020-01749-x | Zbl:1442.35019
- A degenerate pseudo-parabolic equation with memory, Communications in Applied and Industrial Mathematics, Volume 10 (2019) no. 1, pp. 71-77 | DOI:10.2478/caim-2019-0013 | Zbl:1422.35126
- Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator, Interfaces and Free Boundaries, Volume 21 (2019) no. 1, pp. 41-59 | DOI:10.4171/ifb/416 | Zbl:1419.35080
- Asymptotic decay under nonlinear and noncoercive dissipative effects for electrical conduction in biological tissues, NoDEA. Nonlinear Differential Equations and Applications, Volume 23 (2016) no. 4, p. 24 (Id/No 48) | DOI:10.1007/s00030-016-0396-8 | Zbl:1356.35044
- Exponential decay for a nonlinear model for electrical conduction in biological tissues, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 131 (2016), pp. 206-228 | DOI:10.1016/j.na.2015.07.002 | Zbl:1327.35373
- Size estimates for the EIT problem with one measurement: the complex case, Revista Matemática Iberoamericana, Volume 30 (2014) no. 2, pp. 551-580 | DOI:10.4171/rmi/793 | Zbl:1317.35293
- Lipschitz stability for the electrical impedance tomography problem: the complex case, Communications in Partial Differential Equations, Volume 36 (2011) no. 10-12, pp. 1723-1749 | DOI:10.1080/03605302.2011.552930 | Zbl:1232.35190
- Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, Journal of Mechanics of Materials and Structures, Volume 4 (2009) no. 2, p. 211 | DOI:10.2140/jomms.2009.4.211
- Applications of homogenization techniques to the electrical conduction in biological tissues, PAMM, Volume 7 (2007) no. 1, p. 2010013 | DOI:10.1002/pamm.200700041
- On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 7, p. 767 | DOI:10.1002/mma.709
- Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics, Nonlinear Analysis. Real World Applications, Volume 6 (2005) no. 2, pp. 367-380 | DOI:10.1016/j.nonrwa.2004.09.002 | Zbl:1149.35343
- An elliptic equation with history, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 338 (2004) no. 8, pp. 595-598 | DOI:10.1016/j.crma.2004.02.008 | Zbl:1101.35076
- EVOLUTION AND MEMORY EFFECTS IN THE HOMOGENIZATION LIMIT FOR ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES, Mathematical Models and Methods in Applied Sciences, Volume 14 (2004) no. 09, p. 1261 | DOI:10.1142/s0218202504003623
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier