Comptes Rendus
Homogenization limit for electrical conduction in biological tissues in the radio-frequency range
[Limite d'homogénéisation pour la conduction électrique dans les tissus biologiques dans le domaine des radiofréquences]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 7, pp. 503-508.

On étudie un modèle d'évolution pour la conduction électrique dans les tissus biologiques, où les espaces conducteurs intracellulaires et extracellulaires sont séparés par des membranes cellulaires isolantes. Le schéma mathématique est celui d'un problème elliptique avec des conditions aux limites dynamiques sur les membranes des cellules. Le problème est formulé dans un milieu périodique finement mixte. On démontre que la limite d'homogénéisation u0 du potentiel électrique, obtenue pour une période de la structure microscopique approchant de zéro, est solution de l'équation -div(σ0xu0+A0xu0+0tA1(t-τ)xu0(x,τ)dτ-(x,t))=0σ0>0 et les matrices A0, A1 dépendent de la géométrie et des propriétés du matériau, tandis que la fonction vectorielle gardes une trace des données initiales du problème originaire. Des effets de mémoire se montrent ici explicitement, rendant cette équation elliptique de type non classique.

We study an evolutive model for electrical conduction in biological tissues, where the conductive intra-cellular and extracellular spaces are separated by insulating cell membranes. The mathematical scheme is an elliptic problem, with dynamical boundary conditions on the cell membranes. The problem is set in a finely mixed periodic medium. We show that the homogenization limit u0 of the electric potential, obtained as the period of the microscopic structure approaches zero, solves the equation -div(σ0xu0+A0xu0+0tA1(t-τ)xu0(x,τ)dτ-(x,t))=0 where σ0>0 and the matrices A0, A1 depend on geometric and material properties, while the vector function keeps trace of the initial data of the original problem. Memory effects explicitly appear here, making this elliptic equation of non standard type.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(03)00107-4
Keywords: Continuum mechanics, Electrical conduction, Homogenization, Biomathematics
Mots-clés : Mécanique des milieux continus, Conduction électrique, Homogénéisation, Biomathématique

Micol Amar 1 ; Daniele Andreucci 1 ; Paolo Bisegna 2 ; Roberto Gianni 1

1 Dipartimento di Metodi e Modelli Matematici, Università di Roma “La Sapienza”, via A. Scarpa 16, 00161 Roma, Italy
2 Dipartimento di Ingegneria Civile, Università di Roma “Tor Vergata”, via del Politecnico 1, 00133 Roma, Italy
@article{CRMECA_2003__331_7_503_0,
     author = {Micol Amar and Daniele Andreucci and Paolo Bisegna and Roberto Gianni},
     title = {Homogenization limit for electrical conduction in biological tissues in the radio-frequency range},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {503--508},
     publisher = {Elsevier},
     volume = {331},
     number = {7},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00107-4},
     language = {en},
}
TY  - JOUR
AU  - Micol Amar
AU  - Daniele Andreucci
AU  - Paolo Bisegna
AU  - Roberto Gianni
TI  - Homogenization limit for electrical conduction in biological tissues in the radio-frequency range
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 503
EP  - 508
VL  - 331
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00107-4
LA  - en
ID  - CRMECA_2003__331_7_503_0
ER  - 
%0 Journal Article
%A Micol Amar
%A Daniele Andreucci
%A Paolo Bisegna
%A Roberto Gianni
%T Homogenization limit for electrical conduction in biological tissues in the radio-frequency range
%J Comptes Rendus. Mécanique
%D 2003
%P 503-508
%V 331
%N 7
%I Elsevier
%R 10.1016/S1631-0721(03)00107-4
%G en
%F CRMECA_2003__331_7_503_0
Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni. Homogenization limit for electrical conduction in biological tissues in the radio-frequency range. Comptes Rendus. Mécanique, Volume 331 (2003) no. 7, pp. 503-508. doi : 10.1016/S1631-0721(03)00107-4. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00107-4/

[1] K.R. Foster; H.P. Schwan Dielectric properties tissues and biological materials: a critical review, Crit. Rev. Biomed. Engrg., Volume 17 (1989), pp. 25-104

[2] J. Bronzino The Biomedical Engineering Handbook, CRC Press, 1999

[3] F. Lene; D. Leguillon Étude de l'influence d'un glissement entre les constituants d'un matériau composite sur ses coefficients de comportement effectifs, J. Méc., Volume 20 (1981), pp. 509-536

[4] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, to appear

[5] É. Sanchez-Palencia Non Homogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, 1980

[6] A. Bensoussan; J. Lions; G. Papanicolaou Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978

[7] P.A. Raviart; J.-M. Thomas Introduction á l'analyse numérique des équations aux dérivées partielles, Masson, Paris, 1983

  • R. Allena; D. Scerrato; A.M. Bersani; I. Giorgio A model for the bio-mechanical stimulus in bone remodelling as a diffusive signalling agent for bones reconstructed with bio-resorbable grafts, Mechanics Research Communications, Volume 129 (2023), p. 104094 | DOI:10.1016/j.mechrescom.2023.104094
  • Daria Scerrato; Ivan Giorgio; Alberto Maria Bersani; Daniele Andreucci A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling, Symmetry, Volume 14 (2022) no. 11, p. 2436 | DOI:10.3390/sym14112436
  • M. Amar; D. Andreucci; R. Gianni; C. Timofte Well-posedness of two pseudo-parabolic problems for electrical conduction in heterogeneous media, Journal of Mathematical Analysis and Applications, Volume 493 (2021) no. 2, p. 18 (Id/No 124533) | DOI:10.1016/j.jmaa.2020.124533 | Zbl:1451.35075
  • Micol Amar; D. Andreucci; R. Gianni; C. Timofte Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 3, p. 31 (Id/No 99) | DOI:10.1007/s00526-020-01749-x | Zbl:1442.35019
  • Micol Amar; Daniele Andreucci; Roberto Gianni; Claudia Timofte A degenerate pseudo-parabolic equation with memory, Communications in Applied and Industrial Mathematics, Volume 10 (2019) no. 1, pp. 71-77 | DOI:10.2478/caim-2019-0013 | Zbl:1422.35126
  • Micol Amar; Roberto Gianni Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator, Interfaces and Free Boundaries, Volume 21 (2019) no. 1, pp. 41-59 | DOI:10.4171/ifb/416 | Zbl:1419.35080
  • Micol Amar; Daniele Andreucci; Roberto Gianni Asymptotic decay under nonlinear and noncoercive dissipative effects for electrical conduction in biological tissues, NoDEA. Nonlinear Differential Equations and Applications, Volume 23 (2016) no. 4, p. 24 (Id/No 48) | DOI:10.1007/s00030-016-0396-8 | Zbl:1356.35044
  • M. Amar; D. Andreucci; R. Gianni Exponential decay for a nonlinear model for electrical conduction in biological tissues, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 131 (2016), pp. 206-228 | DOI:10.1016/j.na.2015.07.002 | Zbl:1327.35373
  • Elena Beretta; Elisa Francini; Sergio Vessella Size estimates for the EIT problem with one measurement: the complex case, Revista Matemática Iberoamericana, Volume 30 (2014) no. 2, pp. 551-580 | DOI:10.4171/rmi/793 | Zbl:1317.35293
  • Elena Beretta; Elisa Francini Lipschitz stability for the electrical impedance tomography problem: the complex case, Communications in Partial Differential Equations, Volume 36 (2011) no. 10-12, pp. 1723-1749 | DOI:10.1080/03605302.2011.552930 | Zbl:1232.35190
  • Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, Journal of Mechanics of Materials and Structures, Volume 4 (2009) no. 2, p. 211 | DOI:10.2140/jomms.2009.4.211
  • Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni Applications of homogenization techniques to the electrical conduction in biological tissues, PAMM, Volume 7 (2007) no. 1, p. 2010013 | DOI:10.1002/pamm.200700041
  • M. Amar; D. Andreucci; P. Bisegna; R. Gianni On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 7, p. 767 | DOI:10.1002/mma.709
  • Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics, Nonlinear Analysis. Real World Applications, Volume 6 (2005) no. 2, pp. 367-380 | DOI:10.1016/j.nonrwa.2004.09.002 | Zbl:1149.35343
  • Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni An elliptic equation with history, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 338 (2004) no. 8, pp. 595-598 | DOI:10.1016/j.crma.2004.02.008 | Zbl:1101.35076
  • MICOL AMAR; DANIELE ANDREUCCI; ROBERTO GIANNI; PAOLO BISEGNA EVOLUTION AND MEMORY EFFECTS IN THE HOMOGENIZATION LIMIT FOR ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES, Mathematical Models and Methods in Applied Sciences, Volume 14 (2004) no. 09, p. 1261 | DOI:10.1142/s0218202504003623

Cité par 16 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: