[Le mélange est un processus d'agrégation]
With the aid of several demonstration experiments, it is shown how a stirred scalar mixture relaxes towards uniformity through an aggregation process. The elementary bricks are stretched sheets whose rates of diffusive smoothing and coalescence build up the overall mixture concentration distribution. The cases studied, in particular, include mixtures in two and three dimensions, with different stirring protocols, which all lead to a family of concentration distributions stable by self-convolution.
Des expériences démonstratives suggèrent qu'un mélange scalaire agité relaxe vers l'uniformité à travers un processus d'agrégation. Les briques élémentaires sont des feuillets étirés qui se diluent dans le milieu en même temps qu'ils s'agrègent, construisant par là l'ensemble de la distribution de concentration de la mixture. Les cas considérés en particulier sont des mélanges en deux et trois dimensions, agités par des protocles très différents et qui pourtant donnent naissance aux mêmes distributions de concentration, stables par auto-convolution.
Accepté le :
Publié le :
Mots-clés : Turbulence, Mélange, Agitation, Diffusion, Agrégation
Emmanuel Villermaux 1 ; Jérôme Duplat 2
@article{CRMECA_2003__331_7_515_0, author = {Emmanuel Villermaux and J\'er\^ome Duplat}, title = {Mixing is an aggregation process}, journal = {Comptes Rendus. M\'ecanique}, pages = {515--523}, publisher = {Elsevier}, volume = {331}, number = {7}, year = {2003}, doi = {10.1016/S1631-0721(03)00110-4}, language = {en}, }
Emmanuel Villermaux; Jérôme Duplat. Mixing is an aggregation process. Comptes Rendus. Mécanique, Volume 331 (2003) no. 7, pp. 515-523. doi : 10.1016/S1631-0721(03)00110-4. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00110-4/
[1] Théorie analytique de la chaleur, F. Didot, Père & Fils, Paris, 1822
[2] Boundary Layer Theory, McGraw-Hill, New York, 1987
[3] Material-element deformation in isotropic turbulence, J. Fluid Mech., Volume 220 (1990), pp. 427-458
[4] Persistency of material element deformation in isotropic flows and growth rate of lines and surfaces, Eur. Phys. J. B, Volume 18 (2000), pp. 353-361
[5] Turbulence, fractals and mixing (H. Chaté; E. Villermaux; J.M. Chomaz, eds.), Mixing: Chaos and Turbulence, Kluwer Academic/Plenum, New York, 1999
[6] Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows, AIChE J., Volume 25 (1979) no. 1, pp. 41-47
[7] Mixing, diffusion and chemical reaction of liquids in a vortex field (M. Moreau; P. Turq, eds.), Chemical Reactivity in Liquids: Fundamental Aspects, Plenum Press, 1988
[8] The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, 1989
[9] Mixing in coaxial jets, J. Fluid Mech., Volume 425 (2000), pp. 161-185
[10] The effect of homogeneous turbulence on material lines and surfaces, Proc. Roy. Soc. A, Volume 213 (1952), pp. 349-366
[11] An Introduction to Probability Theory and its Applications, Wiley, 1970
[12] Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem., Volume 92 (1917), pp. 129-168
[13] Dispersed phase mixing: I. Theory and effect in simple reactors, AIChE J., Volume 9 (1963) no. 2, pp. 175-181
[14] Exponential tails and random advection, Phys. Rev. Lett., Volume 66 (1991) no. 23, pp. 2984-2987
[15] Pdf methods for turbulent reacting flows, Prog. Energy Combust. Sci., Volume 11 (1985), pp. 119-192
[16] Scaling of hard thermal turbulence in Rayleigh–Bénard convection, J. Fluid Mech., Volume 204 (1989), pp. 1-30
[17] Probability distributions, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence, Phys. Fluids A, Volume 4 (1992) no. 10, pp. 2292-2307
[18] Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence, J. Fluid Mech., Volume 244 (1992), pp. 547-566
[19] Mixing of a passive scalar in magnetically forced two-dimensional turbulence, Phys. Fluids, Volume 9 (1997) no. 7, pp. 2061-2080
[20] Experimental observation of Batchelor dispersion of passive tracers, Phys. Rev. Lett., Volume 85 (2000) no. 17, pp. 3636-3639
[21] Turbulent mixing of a passive scalar, Phys. Fluids, Volume 6 (1994) no. 5, pp. 1820-1837
[22] Short circuits in the Corrsin–Oboukhov cascade, Phys. Fluids, Volume 13 (2001) no. 1, pp. 284-289
[23] Efficient mixing at low Reynolds numbers using polymer additives, Nature, Volume 410 (2001), pp. 905-908
[24] Lagrangian path integrals and fluctuations in random flows, Phys. Rev. E, Volume 49 (1994), pp. 2912-2927
[25] Scalar turbulence, Nature, Volume 405 (2000), pp. 639-646
[26] Particles and fields in fluid turbulence, Rev. Mod. Phys., Volume 73 (2001) no. 4, pp. 913-975
[27] Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalr problem, Phys. Rev. E, Volume 60 (1999) no. 4, pp. 4164-4174
- Linking mixing interface deformation to concentration gradients in porous media, Physical Review Fluids, Volume 10 (2025) no. 2 | DOI:10.1103/physrevfluids.10.024501
- Mixing-driven flavor and aroma in fermented foods, Physics of Fluids, Volume 37 (2025) no. 3 | DOI:10.1063/5.0253287
- Connecting finite-time Lyapunov exponents with supersaturation and droplet dynamics in a turbulent bulk flow, Physical Review E, Volume 109 (2024) no. 4 | DOI:10.1103/physreve.109.045101
- Mixing mechanisms in the view of mixing indicators: from passive-scalar mixing to variable-density mixing, Metascience in Aerospace, Volume 1 (2023) no. 1, p. 1 | DOI:10.3934/mina.2024001
- Fluid deformation in isotropic Darcy flow, Journal of Fluid Mechanics, Volume 945 (2022) | DOI:10.1017/jfm.2022.556
- The Lagrangian kinematics of three-dimensional Darcy flow, Journal of Fluid Mechanics, Volume 918 (2021) | DOI:10.1017/jfm.2021.362
- Performance evaluation of approaches to predict sub-hourly peak odour concentrations, Atmospheric Environment: X, Volume 7 (2020), p. 100076 | DOI:10.1016/j.aeaoa.2020.100076
- Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence, Journal of Fluid Mechanics, Volume 903 (2020) | DOI:10.1017/jfm.2020.562
- Diffusion limited mixing in confined media, Physical Review Fluids, Volume 5 (2020) no. 12 | DOI:10.1103/physrevfluids.5.124502
- The impact of stretching-enhanced mixing and coalescence on reactivity in mixing-limited reactive flows, Physics of Fluids, Volume 32 (2020) no. 10 | DOI:10.1063/5.0022798
- Mixing Effect on Stoichiometric Diversity in Benzoic Acid–Sodium Benzoate Cocrystals, Crystal Growth Design, Volume 19 (2019) no. 3, p. 1576 | DOI:10.1021/acs.cgd.8b01220
- Disturbed flow in an aquatic environment may create a sensory refuge for aggregated prey, PeerJ, Volume 5 (2017), p. e3121 | DOI:10.7717/peerj.3121
Cité par 12 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier