[Comportement asymptotique des valeurs propres du laplacien avec conditions de Neumann sur un tube extrait]
On considère l'opérateur de Laplace dans un domaine tridimensionnel borné dont on a extrait un tube fin, avec la condition aux limites de Neumann. Nous construisons le développement asymptotique des valeurs propres pour des valeurs petites du diamètre du tube.
We consider the eigenvalue problem for the Laplace operator in a bounded three-dimensional domain where a thin tube is cut out. Imposing a Neumann boundary condition on the boundary of this tube, we construct asymptotics for eigenvalues on the small parameter that is a diameter of the tube.
Accepté le :
Publié le :
Mot clés : Vibrations, Asymptotics, Eigenvalue
Marina Yu. Planida 1
@article{CRMECA_2003__331_8_531_0, author = {Marina Yu. Planida}, title = {Asymptotics for eigenvalues of the {Laplacian} with a {Neumann} boundary condition on a thin cut-out tube}, journal = {Comptes Rendus. M\'ecanique}, pages = {531--536}, publisher = {Elsevier}, volume = {331}, number = {8}, year = {2003}, doi = {10.1016/S1631-0721(03)00125-6}, language = {en}, }
TY - JOUR AU - Marina Yu. Planida TI - Asymptotics for eigenvalues of the Laplacian with a Neumann boundary condition on a thin cut-out tube JO - Comptes Rendus. Mécanique PY - 2003 SP - 531 EP - 536 VL - 331 IS - 8 PB - Elsevier DO - 10.1016/S1631-0721(03)00125-6 LA - en ID - CRMECA_2003__331_8_531_0 ER -
Marina Yu. Planida. Asymptotics for eigenvalues of the Laplacian with a Neumann boundary condition on a thin cut-out tube. Comptes Rendus. Mécanique, Volume 331 (2003) no. 8, pp. 531-536. doi : 10.1016/S1631-0721(03)00125-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00125-6/
[1] On the convergence of solutions of singularly perturbed boundary-value problems for the Laplace operator, Math. Notes, Volume 71 (2002), pp. 867-877
[2] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI, 1992
[3] Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian under singular perturbation of the boundary condition, Math. Notes, Volume 52 (1992), pp. 1020-1029
[4] Asymptotics of eigenvalues for a cylinder insulated on a narrow strip, Comput. Math. Math. Phys., Volume 43 (2003), pp. 403-413
[5] S.A. Nazarov, M.V. Paukshto, Discrete models and homogenization in problems of elastisity theory, Lenigrad University, Leningrad, 1984 (in Russian)
[6] Spectra of domains spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 30 (1983), pp. 259-277
[7] Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes, Math. USSR-Izv., Volume 24 (1985), pp. 321-345
Cité par Sources :
Commentaires - Politique