We consider the eigenvalue problem for the Laplace operator in a bounded three-dimensional domain where a thin tube is cut out. Imposing a Neumann boundary condition on the boundary of this tube, we construct asymptotics for eigenvalues on the small parameter that is a diameter of the tube.
On considère l'opérateur de Laplace dans un domaine tridimensionnel borné dont on a extrait un tube fin, avec la condition aux limites de Neumann. Nous construisons le développement asymptotique des valeurs propres pour des valeurs petites du diamètre du tube.
Accepted:
Published online:
Mots-clés : Vibrations, Asymptotics, Eigenvalue
Marina Yu. Planida 1
@article{CRMECA_2003__331_8_531_0, author = {Marina Yu. Planida}, title = {Asymptotics for eigenvalues of the {Laplacian} with a {Neumann} boundary condition on a thin cut-out tube}, journal = {Comptes Rendus. M\'ecanique}, pages = {531--536}, publisher = {Elsevier}, volume = {331}, number = {8}, year = {2003}, doi = {10.1016/S1631-0721(03)00125-6}, language = {en}, }
TY - JOUR AU - Marina Yu. Planida TI - Asymptotics for eigenvalues of the Laplacian with a Neumann boundary condition on a thin cut-out tube JO - Comptes Rendus. Mécanique PY - 2003 SP - 531 EP - 536 VL - 331 IS - 8 PB - Elsevier DO - 10.1016/S1631-0721(03)00125-6 LA - en ID - CRMECA_2003__331_8_531_0 ER -
Marina Yu. Planida. Asymptotics for eigenvalues of the Laplacian with a Neumann boundary condition on a thin cut-out tube. Comptes Rendus. Mécanique, Volume 331 (2003) no. 8, pp. 531-536. doi : 10.1016/S1631-0721(03)00125-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00125-6/
[1] On the convergence of solutions of singularly perturbed boundary-value problems for the Laplace operator, Math. Notes, Volume 71 (2002), pp. 867-877
[2] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI, 1992
[3] Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian under singular perturbation of the boundary condition, Math. Notes, Volume 52 (1992), pp. 1020-1029
[4] Asymptotics of eigenvalues for a cylinder insulated on a narrow strip, Comput. Math. Math. Phys., Volume 43 (2003), pp. 403-413
[5] S.A. Nazarov, M.V. Paukshto, Discrete models and homogenization in problems of elastisity theory, Lenigrad University, Leningrad, 1984 (in Russian)
[6] Spectra of domains spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 30 (1983), pp. 259-277
[7] Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes, Math. USSR-Izv., Volume 24 (1985), pp. 321-345
Cited by Sources:
Comments - Policy