[L'hydrodynamique des fluides critiques]
Les coefficients de transport des fluides purs présentent des variations importantes au voisinage du point critique liquide–gaz. En particulier, la diffusivité thermique tends vers zéro tandis que la compressibilité isotherme tend vers l'infini. Les fluides supercritiques sont donc aussi denses que des liquides et beaucoup plus compressibles que des gaz. Ces propriétés font varier de plusieurs ordres de grandeurs les paramètres de similitude lorsqu'on se rapproche du point critique ouvrant ainsi un champ de recherche très large. Nous faisons la synthèse de quatre principaux domaines : le transfert de chaleur, les écoulements de cavité, les interfaces et les instabilités hydrodynamiques. Dans le premier domaine nous présentons un quatrième mode de transfert de chaleur, dit par Effet Piston, qui transporte la chaleur beaucoup plus rapidement que par diffusion en l'absence de convection. Nous montrons dans le second comment ce mécanisme de transfert de chaleur interagit avec la convection. Dans le troisième domaine, nous montrons en fait qu'un fluide critique pur non homogène se comporte comme un fluide diphasique à phases miscibles. Nous présentons enfin quelques comportements spécifiques de la convection de Rayleigh–Benard comme les expériences et simulations numériques les ont récemment mis en évidence. La dernière partie donne quelques pistes pour la poursuite des travaux actuels. Nous insistons sur le besoin de développer complètement l'hydrodynamique des fluides très compressible et diffusant peu la chaleur car ce sujet est à la fois porteur de physique nouvelle et nécessaire au développements du génie des procédés.
In the vicinity of the gas–liquid critical point, transport coefficients of pure fluids experience important changes. In particular, the thermal diffusivity tends to zero whereas the isothermal compressibility tends to infinity. Supercritical fluids are thus as dense as liquids and much more expandable than gases. These properties make the hydrodynamic similarity parameters vary over orders of magnitude when nearing the critical point, thus leading to a large field of research. We review here four main fields: heat transfer, cavity flows, interfaces and hydrodynamic instabilities. In the first, we present a fourth adiabatic heat transfer mechanism, called the piston effect, which carries heat much faster than diffusion, in the absence of convection. In the second, we show how this heat transfer mechanism interacts with buoyant convection. In the third, we basically show that a thermally non-homogeneous near-critical fluid behaves as a two miscible-phases fluid. In the fourth, we present some specific behavior of the Rayleigh–Benard convection, as recent experiments and numerical simulations have indicated. The last part gives some pathways in the continuation of the current research. We stress the need to fully develop the hydrodynamic of highly expandable, low heat diffusing fluids since the subject is both a bearer of new physics and is needed for the development of processes in chemical engineering.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Point critique liquide–gaz, Hydrodynamique
Bernard Zappoli 1, 2
@article{CRMECA_2003__331_10_713_0, author = {Bernard Zappoli}, title = {Near-critical fluid hydrodynamics}, journal = {Comptes Rendus. M\'ecanique}, pages = {713--726}, publisher = {Elsevier}, volume = {331}, number = {10}, year = {2003}, doi = {10.1016/j.crme.2003.05.001}, language = {en}, }
Bernard Zappoli. Near-critical fluid hydrodynamics. Comptes Rendus. Mécanique, Volume 331 (2003) no. 10, pp. 713-726. doi : 10.1016/j.crme.2003.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.05.001/
[1] Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford, 1971
[2] J. Fluid Mech., 70 (1975), p. 705
[3] S. Paolucci, Sandia NAti. Lab. SAND 82-8257, 1982
[4] P.J. Heinmiller, TRW Rep. 17618-H080-R0-00, Houston, USA
[5] Rev. Mod. Phys., 50 (1978), p. 85
[6] Int. Astrophys. J., 141 (1965), p. 1068
[7] Phys. Rev. A, 40 (1989), p. 6421
[8] Phys. Rev. A, 45 (1992), p. 842
[9] Phys. Rev. Lett., 83 (1999), p. 3641
[10] Phys. Rev. Lett., 79 (1997), p. 3648
[11] W. Chavanne, Ph.D. Thesis, Univ. Joseph Fourrier, Grenoble, 1997
[12] Phys. Rev. Lett., 84 (2000), p. 4357
[13] Phys. Rev. Lett., 86 (1999), p. 3320
[14] Phys. Rev. Lett., 82 (1999), p. 4635
[15] Phys. Rev. E, 63 (2001), p. 056310
[16] Nature (London), 404 (2000), p. 837
[17] J. Fluid. Mech., 449 (2001), p. 169
[18] Phys. Rev. Lett., 70 (1993), p. 3888
[19] Phys. Rev. E, 57 (1998), p. 5665
[20] Progress in Liquid Physics (C.A. Croxton, ed.), Wiley, New York, 1978 (references therein)
[21] Proc. Sixth Europ. Symp. on Mat. Sc. under Micro-g Conditions, Bordeaux, France, 1986 (p. 109. ESA, SSP-256)
[22] Phys. Rev. A, 41 (1990), pp. 2256-2259
[23] Phys. Rev. A, 41 (1990), pp. 2260-2263
[24] Phys. Rev. A, 41 (1990), pp. 2264-2267
[25] Rev. Mod. Phys., 51 (1979), p. 79
[26] Phys. Rev. Lett., 65 (1990), p. 2654
[27] Phys. Rev. A, 43 (1991), p. 4562
[28] Phys. Rev. E, 47 (1993), p. 1531
[29] Phys. Rev. E, 51 (1995), p. 5556
[30] Phys. Rev. E, 62 (2000), p. 2353
[31] Eur. J. Mech. B Fluids, 16 (1997), p. 665
[32] Physica A, 197 (1993), p. 23
[33] Phys. Rev. E, 52 (1995), p. 1614
[34] Eur. J. Mech. B Fluids, 14 (1995), p. 1
[35] Physica D, 89 (1995), p. 381
[36] Phys. Rev. Lett., 84 (2000), p. 4100
[37] “Vibrating Grains Form Crumps”, Science News 156 (17.7.99)
[38] J. Fluid Mech., 316 (1996), p. 53
[39] J. Fluid Mech., 388 (1999), p. 389
[40] T. Fröhlich, Ph.D. Thesis, Munich, 1997
[41] Phys. Fluids, 7 (1995), p. 2283
[42] Phys. Fluids, 12 (2000), pp. 197-204
[43] Eur. Phys. Lett., 29 (1995), p. 309
[44] C. R. Acad. Sci. Paris, Sér. IIb (1997), pp. 1-6
[45] Europhys. Lett., 47 (1999), p. 345
[46] Phys. Fluids A, 5 (1993), p. 647
[47] J. Fluid. Mech., 335 (1997), p. 111
[48] Annu. Rev. Fluid Mech., 26 (1994), p. 137
[49] J. Fluid Mech., 442 (2000), p. 119
[50] Phys. Rev. E, 66 (2002), p. 066309
[51] Phys. Rev. E, 66 (2002), p. 016302
[52] Phys. Rev. Lett., 90 (2003), p. 105303
[53] J. Fluid. Mech., 126 (1983), p. 59
[54] P.A. Thomson, K.C. Lambraki, J. Fluid. Mech. 60
[55] M.S. Kramer, A. Kluwick, J. Fluid. Mech. 142
[56] Supercritical Fluids Technology. Review in Modern Theory and Applications, CRC Press, Boca Raton, 1991
[57] F.V. Bright, M.P.E. McNally, Supercritical Fluids Technology. Theoretical Approaches in Analytical Chemistry, ACS Symp. Ser., Vol. 488
- A comprehensive overview of advancements, applications, and impact of supercritical fluid natural circulation loops, Annals of Nuclear Energy, Volume 211 (2025), p. 110971 | DOI:10.1016/j.anucene.2024.110971
- Asymptotic thermophysical behaviors of near-critical fluid under parameter scaling, International Journal of Heat and Fluid Flow, Volume 108 (2024), p. 109442 | DOI:10.1016/j.ijheatfluidflow.2024.109442
- Hydrodynamic density functional theory of simple dissipative fluids, New Journal of Physics, Volume 26 (2024) no. 5, p. 053007 | DOI:10.1088/1367-2630/ad42c9
- Heat transfer in a near-critical fluid saturated porous medium: Piston effect and viscous slowing down, Physical Review Fluids, Volume 9 (2024) no. 12 | DOI:10.1103/physrevfluids.9.124402
- Leading elliptic relationship for supercritical fluids in the Widom region, The Journal of Supercritical Fluids, Volume 208 (2024), p. 106216 | DOI:10.1016/j.supflu.2024.106216
- Comparison study of fluid thermal boundary-bulk behaviors in the close-to-critical region under different property trends, Physics of Fluids, Volume 35 (2023) no. 8 | DOI:10.1063/5.0158450
- , Proceeding of International Heat Transfer Conference 17 (2023), p. 7 | DOI:10.1615/ihtc17.440-10
- A Study on the Effect of Geometry and Operating Variables on Density Wave Oscillation in a Supercritical Natural Circulation Loop, Computation, Volume 10 (2022) no. 2, p. 25 | DOI:10.3390/computation10020025
- Introduction to Binary Mixtures at Supercritical Pressures and Coupled Heat and Mass Transfer, Coupled Heat and Mass Transfer in Binary Mixtures at Supercritical Pressures (2022), p. 1 | DOI:10.1007/978-981-16-7806-6_1
- A thermodynamic model for thermo-acoustic heat transfer within closed cavities that includes soft wall acoustic resistance, International Communications in Heat and Mass Transfer, Volume 135 (2022), p. 106119 | DOI:10.1016/j.icheatmasstransfer.2022.106119
- On the modeling and simulation of coupled adsorption and thermosolutal convection in supercritical carbon dioxide, Journal of Engineering and Applied Science, Volume 69 (2022) no. 1 | DOI:10.1186/s44147-021-00054-4
- Asymptotic analysis of boundary thermal-wave process near the liquid–gas critical point, Physics of Fluids, Volume 34 (2022) no. 3 | DOI:10.1063/5.0086516
- Mathematical and numerical investigation of Ledinegg flow excursion and dynamic instability of natural circulation loop at supercritical condition, Annals of Nuclear Energy, Volume 155 (2021), p. 108129 | DOI:10.1016/j.anucene.2021.108129
- Mathematical modeling and numerical investigation of density wave instability of supercritical natural circulation loop, E3S Web of Conferences, Volume 321 (2021), p. 04004 | DOI:10.1051/e3sconf/202132104004
- Principles, Experiments, and Numerical Studies of Supercritical Fluid Natural Circulation System, Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems (2021), p. 219 | DOI:10.4018/978-1-7998-5796-9.ch007
- Thermal-Mechanical Effects and Near-Critical Fluid Dynamic Behaviors in Micro-Scale, Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems (2021), p. 55 | DOI:10.4018/978-1-7998-5796-9.ch003
- Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements, Nuclear Engineering and Technology, Volume 53 (2021) no. 11, p. 3597 | DOI:10.1016/j.net.2021.05.026
- Heat-induced planar shock waves in supercritical fluids, Shock Waves, Volume 30 (2020) no. 2, p. 153 | DOI:10.1007/s00193-019-00934-y
- Soft wall resistance as a necessary condition to validate numerical simulations in thermoacoustic heat transfer within closed cavities, International Journal of Thermal Sciences, Volume 135 (2019), p. 580 | DOI:10.1016/j.ijthermalsci.2018.09.030
- Onset of double-diffusive convection in near-critical gas mixtures, Physical Review E, Volume 99 (2019) no. 3 | DOI:10.1103/physreve.99.033112
- Onset of convection in a near-critical binary fluid mixture driven by concentration gradient, Journal of Fluid Mechanics, Volume 848 (2018), pp. 1098-1126 | DOI:10.1017/jfm.2018.397 | Zbl:1404.76247
- The Rayleigh–Bénard convection in near-critical fluids: Influences of the specific heat ratio, Numerical Heat Transfer, Part A: Applications, Volume 74 (2018) no. 1, p. 931 | DOI:10.1080/10407782.2018.1505095
- , 55th AIAA Aerospace Sciences Meeting (2017) | DOI:10.2514/6.2017-0086
- Principles, Experiments, and Numerical Studies of Supercritical Fluid Natural Circulation System, Advanced Applications of Supercritical Fluids in Energy Systems (2017), p. 136 | DOI:10.4018/978-1-5225-2047-4.ch005
- Thermal-Mechanical Effects and Near-Critical Fluid Dynamic Behaviors in Micro-Scale, Advanced Applications of Supercritical Fluids in Energy Systems (2017), p. 55 | DOI:10.4018/978-1-5225-2047-4.ch003
- Natural Convection Supercritical Fluid Systems for Geothermal, Heat Transfer, and Energy Conversion, Energy Solutions to Combat Global Warming, Volume 33 (2017), p. 391 | DOI:10.1007/978-3-319-26950-4_20
- Challenges in Near-Critical Microchannel Flows, Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (2017), p. 1 | DOI:10.1007/978-981-10-2784-0_1
- Theoretical Analysis of Near-Critical Stability Behaviors, Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (2017), p. 119 | DOI:10.1007/978-981-10-2784-0_6
- Discussion on Near-Critical Heat Transfer Flow Experiment, Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (2017), p. 51 | DOI:10.1007/978-981-10-2784-0_3
- Numerical Formulation of Near-Critical CO2 Flow in Microchannels, Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (2017), p. 69 | DOI:10.1007/978-981-10-2784-0_4
- Heat Transfer Characteristics of Near-Critical Microchannel Flows, Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (2017), p. 95 | DOI:10.1007/978-981-10-2784-0_5
- Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review, Microgravity Science and Technology, Volume 29 (2017) no. 4, p. 275 | DOI:10.1007/s12217-017-9546-9
- Numerical simulation of stability behaviors and heat transfer characteristics for near-critical fluid microchannel flows, Energy Conversion and Management, Volume 110 (2016), p. 407 | DOI:10.1016/j.enconman.2015.12.031
- Development of a new heat transfer optimization method for compressible fluid flows and it numerical verifications, International Journal of Heat and Mass Transfer, Volume 100 (2016), p. 267 | DOI:10.1016/j.ijheatmasstransfer.2016.04.051
- On the Relaxation Time Scales of the Classical Thermodynamic Model for Heat Transfer in Quiescent Compressible Fluids, Journal of Heat Transfer, Volume 138 (2016) no. 10 | DOI:10.1115/1.4033462
- Investigation of trans-critical CO 2 horizontal mini-channel flow with multi-peak heat transfer behaviors, Annals of Nuclear Energy, Volume 75 (2015), p. 559 | DOI:10.1016/j.anucene.2014.09.001
- Modeling supercritical heat transfer in compressible fluids, International Journal of Thermal Sciences, Volume 88 (2015), p. 267 | DOI:10.1016/j.ijthermalsci.2014.08.011
- Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence, Physics of Fluids, Volume 27 (2015) no. 3 | DOI:10.1063/1.4916344
- Heat transfer and various convection structures of near-critical CO2 flow in microchannels, Applied Thermal Engineering, Volume 72 (2014) no. 1, p. 135 | DOI:10.1016/j.applthermaleng.2013.11.036
- Magnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluid, Experiments in Fluids, Volume 55 (2014) no. 7 | DOI:10.1007/s00348-014-1777-6
- Abnormal microchannel convective fluid flow near the gas–liquid critical point, Physica A: Statistical Mechanics and its Applications, Volume 398 (2014), p. 10 | DOI:10.1016/j.physa.2013.11.002
- Numerical investigation of near-critical fluid convective flow mixing in microchannels, Chemical Engineering Science, Volume 97 (2013), p. 67 | DOI:10.1016/j.ces.2013.04.010
- An overview of heat transfer near the liquid–gas critical point under the influence of the piston effect: Phenomena and theory, International Journal of Thermal Sciences, Volume 71 (2013), p. 1 | DOI:10.1016/j.ijthermalsci.2013.04.010
- Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops, Nuclear Engineering and Design, Volume 257 (2013), p. 21 | DOI:10.1016/j.nucengdes.2013.01.016
- Thermal relaxation and critical instability of near-critical fluid microchannel flow, Physical Review E, Volume 87 (2013) no. 4 | DOI:10.1103/physreve.87.043016
- MR measurement of critical phase transition dynamics and supercritical fluid dynamics in capillary and porous media flow, Journal of Magnetic Resonance, Volume 214 (2012), p. 309 | DOI:10.1016/j.jmr.2011.09.045
- Thermal Expansion on Stokes–Fourier Systems, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 3, p. 1831 | DOI:10.1137/110832665
- Effect of heat transfer on the instabilities and transitions of supercritical CO
flow in a natural circulation loop, International Journal of Heat and Mass Transfer, Volume 53 (2010) no. 19-20, pp. 4101-4111 | DOI:10.1016/j.ijheatmasstransfer.2010.05.030 | Zbl:1194.80015 - Natural convective flow and heat transfer of supercritical CO
in a rectangular circulation loop, International Journal of Heat and Mass Transfer, Volume 53 (2010) no. 19-20, pp. 4112-4122 | DOI:10.1016/j.ijheatmasstransfer.2010.05.031 | Zbl:1194.80087 - Supercritical Fluids, Encyclopedia of Polymer Science and Technology (2008) | DOI:10.1002/0471440264.pst087
- Numerical analysis of supercritical flow instabilities in a natural circulation loop, Nuclear Engineering and Design, Volume 238 (2008) no. 8, p. 1947 | DOI:10.1016/j.nucengdes.2007.10.034
- Critical phenomena in microgravity: Past, present, and future, Reviews of Modern Physics, Volume 79 (2007) no. 1, p. 1 | DOI:10.1103/revmodphys.79.1
- Enzymatic activity ofL-amino acid oxidase from snake venomCrotalus adamanteusin supercritical CO2, Biocatalysis and Biotransformation, Volume 23 (2005) no. 5, p. 315 | DOI:10.1080/10242420500285694
- Equilibration and other dynamic properties of fluids near the liquid–vapor critical point, Comptes Rendus. Mécanique, Volume 332 (2004) no. 5-6, p. 327 | DOI:10.1016/j.crme.2004.02.006
Cité par 54 documents. Sources : Crossref, zbMATH
Commentaires - Politique