This paper deals with the design of mathematical frameworks for the modeling of traffic flow phenomena by suitable developments of classical models of the kinetic theory. Various types of evolution equations are deduced, and different mathematical structures are proposed toward conceivable applications.
Ce travail est consacrè à la construction des structures mathématiques pour modéliser des phénomènes de traffic véhiculaire en utilisant des développements appropriés des équations classiques de la théorie cinétique. La dérivation de divers types d'équations d'évolution et diverses structures mathématiques vers des applications appropriées sont proposées.
Accepted:
Published online:
Mots-clés : Systèmes dynamiques, Flux du traffic, Théorie cinétique, Sciences non-linéaires
Marcello Delitala 1
@article{CRMECA_2003__331_12_817_0, author = {Marcello Delitala}, title = {Nonlinear models of vehicular traffic flow {\textendash} new frameworks of the mathematical kinetic theory}, journal = {Comptes Rendus. M\'ecanique}, pages = {817--822}, publisher = {Elsevier}, volume = {331}, number = {12}, year = {2003}, doi = {10.1016/j.crme.2003.09.008}, language = {en}, }
Marcello Delitala. Nonlinear models of vehicular traffic flow – new frameworks of the mathematical kinetic theory. Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 817-822. doi : 10.1016/j.crme.2003.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.09.008/
[1] Generalized kinetic (Boltzmann) models: mathematical structures and applications, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 579-604
[2] Math. Models Methods Appl. Sci., 12 (2002) (Special Issue)
[3] Kinetic Theory of Vehicular Traffic, Elsevier, New York, 1971
[4] Traffic and related self-driven many-particle systems, Rev. Modern Phys., Volume 73 (2001), pp. 1067-1141
[5] On the mathematical theory of vehicular traffic flow I – Fluid dynamic and kinetic modeling, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1801-1844
[6] Sincronized flow as a new traffic phase and related problems of traffic flow, Math. Comp. Modelling, Volume 35 (2002), pp. 481-508
[7] Requiem for second order fluid approximations of traffic flow, Transportation Res. Part B, Volume 29 (1995), pp. 277-286
[8] Limit of a collection of dynamical systems: an application to modelling the flow of traffic, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1381-1402
[9] The Mathematical Theory of Dilute Gases, Springer, New York, 1994
[10] Enskog-like kinetic models for vehicular traffic, J. Statist. Phys., Volume 87 (1997) no. 1/2, pp. 91-114
[11] Lecture Notes on the Discretization of the Boltzmann Equation, World Scientific, London, 2002
[12] The half-space problem in discrete kinetic theory, Math. Models Methods Appl. Sci., Volume 13 (2003), pp. 99-120
[13] Diffusive limit of the nonlinear discrete velocity models, Math. Models Methods Appl. Sci., Volume 13 (2003), pp. 33-58
Cited by Sources:
Comments - Policy