Comptes Rendus
Nonlinear models of vehicular traffic flow – new frameworks of the mathematical kinetic theory
Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 817-822.

This paper deals with the design of mathematical frameworks for the modeling of traffic flow phenomena by suitable developments of classical models of the kinetic theory. Various types of evolution equations are deduced, and different mathematical structures are proposed toward conceivable applications.

Ce travail est consacrè à la construction des structures mathématiques pour modéliser des phénomènes de traffic véhiculaire en utilisant des développements appropriés des équations classiques de la théorie cinétique. La dérivation de divers types d'équations d'évolution et diverses structures mathématiques vers des applications appropriées sont proposées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2003.09.008
Keywords: Dynamical systems, Traffic flow, Kinetic theory, Nonlinear sciences
Mot clés : Systèmes dynamiques, Flux du traffic, Théorie cinétique, Sciences non-linéaires

Marcello Delitala 1

1 Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
@article{CRMECA_2003__331_12_817_0,
     author = {Marcello Delitala},
     title = {Nonlinear models of vehicular traffic flow {\textendash} new frameworks of the mathematical kinetic theory},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {817--822},
     publisher = {Elsevier},
     volume = {331},
     number = {12},
     year = {2003},
     doi = {10.1016/j.crme.2003.09.008},
     language = {en},
}
TY  - JOUR
AU  - Marcello Delitala
TI  - Nonlinear models of vehicular traffic flow – new frameworks of the mathematical kinetic theory
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 817
EP  - 822
VL  - 331
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2003.09.008
LA  - en
ID  - CRMECA_2003__331_12_817_0
ER  - 
%0 Journal Article
%A Marcello Delitala
%T Nonlinear models of vehicular traffic flow – new frameworks of the mathematical kinetic theory
%J Comptes Rendus. Mécanique
%D 2003
%P 817-822
%V 331
%N 12
%I Elsevier
%R 10.1016/j.crme.2003.09.008
%G en
%F CRMECA_2003__331_12_817_0
Marcello Delitala. Nonlinear models of vehicular traffic flow – new frameworks of the mathematical kinetic theory. Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 817-822. doi : 10.1016/j.crme.2003.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.09.008/

[1] L. Arlotti; N. Bellomo; E. De Angelis Generalized kinetic (Boltzmann) models: mathematical structures and applications, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 579-604

[2] Math. Models Methods Appl. Sci., 12 (2002) (Special Issue)

[3] I. Prigogine; R. Herman Kinetic Theory of Vehicular Traffic, Elsevier, New York, 1971

[4] D. Helbing Traffic and related self-driven many-particle systems, Rev. Modern Phys., Volume 73 (2001), pp. 1067-1141

[5] N. Bellomo; V. Coscia; M. Delitala On the mathematical theory of vehicular traffic flow I – Fluid dynamic and kinetic modeling, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1801-1844

[6] B. Kerner Sincronized flow as a new traffic phase and related problems of traffic flow, Math. Comp. Modelling, Volume 35 (2002), pp. 481-508

[7] C. Daganzo Requiem for second order fluid approximations of traffic flow, Transportation Res. Part B, Volume 29 (1995), pp. 277-286

[8] S. Darbha; K.R. Rajagopal Limit of a collection of dynamical systems: an application to modelling the flow of traffic, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1381-1402

[9] C. Cercignani; R. Illner; M. Pulvirenti The Mathematical Theory of Dilute Gases, Springer, New York, 1994

[10] A. Klar; R. Wegener Enskog-like kinetic models for vehicular traffic, J. Statist. Phys., Volume 87 (1997) no. 1/2, pp. 91-114

[11] N. Bellomo; R. Gatignol Lecture Notes on the Discretization of the Boltzmann Equation, World Scientific, London, 2002

[12] A. D'Almeida; R. Gatignol The half-space problem in discrete kinetic theory, Math. Models Methods Appl. Sci., Volume 13 (2003), pp. 99-120

[13] A. Bellouquid Diffusive limit of the nonlinear discrete velocity models, Math. Models Methods Appl. Sci., Volume 13 (2003), pp. 33-58

Cited by Sources:

Comments - Policy