The flow of a micropolar fluid through a wavy constricted channel which depends on a small parameter ε⪡1 is considered. The asymptotic solution is built and justified thanks to a study of the boundary layers terms. The Stokes and Navier–Stokes problems set in a tube structure were previously considered. The method of partial asymptotic decomposition of domain (MAPPD) is also applied and justified for the micropolar flow problem. This method reduces the initial problem to the problem set in the boundary layers domain.
Cet article porte sur l'étude de l'écoulement d'un fluide micropolaire à l'intérieur d'un tube, périodiquement ondulé, de période ε, de largeur d'ordre ε et de longueur d'ordre 1. En utilisant une étude similaire à celle effectuée pour des écoulements de Stokes et de Navier–Stokes dans une structure tubulaire, on considère une analyse asymptotique de ce problème. Une solution asymptotique est construite et les termes de couche limite qui apparaissent au voisinage des extrémités sont étudiés. Après justification de cette approche, la méthode de décomposition asymptotique partielle du domaine est mise en place pour ce problème.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Fluides micropolaires, Dévéloppement asymptotique, Décomposition asymptotique partielle du domaine
Delphine Dupuy 1; Gregory P. Panasenko 1, 2; Ruxandra Stavre 3
@article{CRMECA_2004__332_1_31_0, author = {Delphine Dupuy and Gregory P. Panasenko and Ruxandra Stavre}, title = {Asymptotic analysis for micropolar fluids}, journal = {Comptes Rendus. M\'ecanique}, pages = {31--36}, publisher = {Elsevier}, volume = {332}, number = {1}, year = {2004}, doi = {10.1016/j.crme.2003.10.013}, language = {en}, }
Delphine Dupuy; Gregory P. Panasenko; Ruxandra Stavre. Asymptotic analysis for micropolar fluids. Comptes Rendus. Mécanique, Volume 332 (2004) no. 1, pp. 31-36. doi : 10.1016/j.crme.2003.10.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.10.013/
[1] Simple Microfluids, Int. J. Engrg. Sci., Volume 2 (1964), pp. 205-217
[2] Theory of micropolar fluids, J. Math. Mech., Volume 16 (1966), pp. 1-18
[3] A note on the existence and uniqueness of solutions of micropolar fluid equations, Int. J. Engrg. Sci., Volume 14 (1977), pp. 105-108
[4] A uniqueness theorem for micropolar fluid motions in unbounded regions, U.M.I., Volume 5 (1976), pp. 660-666
[5] A distributed control problem for micropolar fluids, Rev. Roum. Math. Pures Appl., Volume 45 (2000) no. 2, pp. 353-358
[6] Optimization and numerical approximation for micropolar fluids, Numer. Funct. Anal. Optim., Volume 24 (2003) no. 3&4, pp. 223-241
[7] The control of the pressure for a micropolar fluids, Z. Angew. Math. Phys. (ZAMP), Volume 53 (2002) no. 6, pp. 912-922
[8] Optimal control of nonstationary, three dimensional micropolar flows (V. Barbu; I. Lasiecka; D. Tiba; C. Varsan, eds.), Analysis and Optimization of Differential Systems, Kluwer Academic, Boston, 2003, pp. 399-409
[9] Method of asymptotic partial decomposition of domain, Math. Mod. Meth. Appl. Sci., Volume 8 (1998) no. 1, pp. 139-156
[10] Method of asymptotic partial decomposition of rod structures, Internat. J. Comput., Volume 8 (1998) no. 1, pp. 139-156
[11] Asymptotic partial decomposition of variational problems, C. R. Acad. Sci. Paris, Ser. IIb, Volume 327 (1999), pp. 1185-1190
[12] Asymptotic expansion of the solution of Navier–Stokes equation in tube structure and partial asymptotic decomposition of domain, Appl. Anal., Volume 76 (2000), pp. 363-381
[13] Asymptotic expansion of the solution of Navier–Stokes equation in a tube structure, C. R. Acad. Sci. Paris, Ser. IIb, Volume 326 (1998), pp. 867-872
[14] Partial asymptotic decomposition of domain: Navier–Stokes equation in tube structure, C. R. Acad. Sci. Paris, Ser. IIb, Volume 326 (1998), pp. 893-898
[15] Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure, Math. Mod. Meth. Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378
[16] An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 1: Linearized Steady Problems, Springer, 1994
Cited by Sources:
Comments - Policy