[Evolution de l'aire interfaciale volumique dans les mélanges diphasiques]
Nous cherchons à décrire l'évolution temporelle de la densité d'interfaces dans un mélange diphasique. L'accent est mis sur les effets de la compressibilité, de la dilatabilité et des changements de phase. Deux chemins complémentaires sont suivis : le premier, assez intuitif, est basé sur des résultats concernant les mélanges dilués, résultats qui sont ensuite interpolés à toute concentration ; le second, plus systématique, est basé sur la moyenne statistique de l'équation qui régit l'évolution temporelle d'un élément d'interface.
We investigate the time evolution of the density of interfaces in a two-phase mixture, with particular emphasis on the role of compressibility, dilatability and phase transitions. Two different and complementary routes are considered: a rather intuitive one based on exact results for dilute mixtures which are then interpolated to all concentrations, and a more systematic approach based on the statistical average of the exact transport equation for elementary pieces of interfaces.
Accepté le :
Publié le :
Mot clés : Rhéologie, Aire interfaciale, Équation de transport, Mélanges diphasiques
Daniel Lhuillier 1
@article{CRMECA_2004__332_2_103_0, author = {Daniel Lhuillier}, title = {Evolution of the volumetric interfacial area in two-phase mixtures}, journal = {Comptes Rendus. M\'ecanique}, pages = {103--108}, publisher = {Elsevier}, volume = {332}, number = {2}, year = {2004}, doi = {10.1016/j.crme.2003.12.004}, language = {en}, }
Daniel Lhuillier. Evolution of the volumetric interfacial area in two-phase mixtures. Comptes Rendus. Mécanique, Volume 332 (2004) no. 2, pp. 103-108. doi : 10.1016/j.crme.2003.12.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.12.004/
[1] Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975 (p. 179)
[2] Some issues related to the modelling of interfacial areas in gas-liquid flows II. Modelling the source terms for dispersed flows, C. R. Acad. Sci. Paris, Ser. IIb, Volume 329 (2001), pp. 473-486
[3] F.E. Marble, J.E. Broadwell, The coherent flame model for turbulent chemical reactions, Project Squid Tech. Rep. TRW-9-PU, 1977
[4] Flame stretch and the balance equation for the flame surface area, Combust. Sci. Tech., Volume 70 (1990), pp. 1-15
[5] Dynamics of interfaces and rheology of immiscible liquid–liquid mixtures, C. R. Mécanique, Volume 331 (2003), pp. 113-118
[6] On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media, Int. J. Engrg. Sci., Volume 20 (1982), pp. 643-662 (see Appendix)
[7] Evolution of geometric statistics, SIAM J. Appl. Math., Volume 50 (1990), pp. 649-666
[8] A mean-field description of two-phase flows with phase changes, Int. J. Multiphase Flow, Volume 29 (2003), pp. 511-525
[9] Generalized Doi–Ohta model for multiphase flows developed by GENERIC, AIChE J., Volume 45 (1999), pp. 1169-1181
[10] Dynamics and rheology of complex interfaces, J. Chem. Phys., Volume 95 (1991), pp. 1242-1248
[11] Area tensors for modelling microstructure during laminar liquid–liquid mixing, Int. J. Multiphase Flow, Volume 25 (1999), pp. 35-61
[12] Jump conditions and entropy sources in two-phase systems. Local instant formulation, Int. J. Multiphase Flow, Volume 1 (1974), pp. 395-409
[13] Rheology and dynamics of immiscible polymer blends, J. Rheology, Volume 38 (1994), pp. 1405-1425
Cité par Sources :
Commentaires - Politique