Comptes Rendus
Adiabatic waves along interfacial layers near the critical point
[Ondes adiabatiques le long des interfaces près du point critique]
Comptes Rendus. Mécanique, Volume 332 (2004) no. 4, pp. 285-292.

Près du point critique, les couches interfaciales sont modélisées à l'aide d'une densité d'énergie non locale. A partir des équations du mouvement des fluides thermocapillaires, nous mettons en évidence des ondes adiabatiques se propageant le long des couches interfaciales. Ces ondes associées aux dérivées secondes des densités se meuvent avec une célérité dépendant de la proximité du point critique.

Near the critical point, isothermal interfacial zones are investigated starting from a non-local density of energy. From the equations of motion of thermocapillary fluids, we point out a new kind of adiabatic waves propagating along the interfacial layers. The waves are associated with the second derivatives of densities and propagate with a celerity depending on the proximity of the critical point.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2004.01.007
Keywords: Fluid mechanics, Waves, Thermocapillary fluid
Mot clés : Mécanique des fluides, Ondes, Fluide thermocapillaire

Henri Gouin 1

1 Laboratoire de modélisation en mécanique et thermodynamique, EA2596, case 322, Université d'Aix-Marseille, 13397 Marseille cedex 20, France
@article{CRMECA_2004__332_4_285_0,
     author = {Henri Gouin},
     title = {Adiabatic waves along interfacial layers near the critical point},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {285--292},
     publisher = {Elsevier},
     volume = {332},
     number = {4},
     year = {2004},
     doi = {10.1016/j.crme.2004.01.007},
     language = {en},
}
TY  - JOUR
AU  - Henri Gouin
TI  - Adiabatic waves along interfacial layers near the critical point
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 285
EP  - 292
VL  - 332
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2004.01.007
LA  - en
ID  - CRMECA_2004__332_4_285_0
ER  - 
%0 Journal Article
%A Henri Gouin
%T Adiabatic waves along interfacial layers near the critical point
%J Comptes Rendus. Mécanique
%D 2004
%P 285-292
%V 332
%N 4
%I Elsevier
%R 10.1016/j.crme.2004.01.007
%G en
%F CRMECA_2004__332_4_285_0
Henri Gouin. Adiabatic waves along interfacial layers near the critical point. Comptes Rendus. Mécanique, Volume 332 (2004) no. 4, pp. 285-292. doi : 10.1016/j.crme.2004.01.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.01.007/

[1] J.D. van der Waals Thermodynamique de la capillarité dans l'hypothèse d'une variation continue de densité, Arch. Néerlandaises, Volume 28 ( 1894–1895 ), pp. 121-209

[2] J.W. Cahn; J.E. Hilliard Free energy of a non-uniform system III, J. Chem. Phys., Volume 31 (1959), pp. 688-699

[3] C. Domb The Critical Point, Taylor & Francis, London, 1996

[4] M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rat. Mech. Anal., Volume 81 (1983), pp. 301-315

[5] L. Truskinovsky Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium, J. Appl. Math. Mech. (PMM), Volume 51 (1987), pp. 777-784

[6] J.S. Rowlinson; B. Widom Molecular Theory of Capillarity, Clarendon Press, Oxford, 1984

[7] P. Casal; H. Gouin Equations of motions of thermocapillary fluids, C. R. Acad. Sci. Paris, Ser. II, Volume 306 (1988), pp. 99-104

[8] H. Gouin Thermodynamic form of the equation of motion for perfect fluids of grade n, C. R. Acad. Sci. Paris Ser. II, Volume 305 (1987), pp. 833-838

[9] P. Casal; H. Gouin Non-isothermal liquid-vapour interfaces, J. Méc. Théor. Appl., Volume 7 (1988), pp. 689-718

[10] H. Gouin; J.M. Delhaye Material waves of a fluid in the vicinity of the critical point (S. Morioka; L. Wijngaarden, eds.), Symposium on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems, Kluwer Academic, Netherlands, 1995

[11] J. Hadamard Leçons sur la propagation des ondes et les équations de l'hydrodynamique, Chelsea, New York, 1949

[12] G. Boillat Nonlinear hyperbolic fields and waves (T. Ruggeri, ed.), Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Math., vol. 1640, Springer-Verlag, Berlin, 1996

[13] Y. Garrabos, private communication, 2003

Cité par Sources :

Commentaires - Politique