[Ondes adiabatiques le long des interfaces près du point critique]
Près du point critique, les couches interfaciales sont modélisées à l'aide d'une densité d'énergie non locale. A partir des équations du mouvement des fluides thermocapillaires, nous mettons en évidence des ondes adiabatiques se propageant le long des couches interfaciales. Ces ondes associées aux dérivées secondes des densités se meuvent avec une célérité dépendant de la proximité du point critique.
Near the critical point, isothermal interfacial zones are investigated starting from a non-local density of energy. From the equations of motion of thermocapillary fluids, we point out a new kind of adiabatic waves propagating along the interfacial layers. The waves are associated with the second derivatives of densities and propagate with a celerity depending on the proximity of the critical point.
Accepté le :
Publié le :
Mot clés : Mécanique des fluides, Ondes, Fluide thermocapillaire
Henri Gouin 1
@article{CRMECA_2004__332_4_285_0, author = {Henri Gouin}, title = {Adiabatic waves along interfacial layers near the critical point}, journal = {Comptes Rendus. M\'ecanique}, pages = {285--292}, publisher = {Elsevier}, volume = {332}, number = {4}, year = {2004}, doi = {10.1016/j.crme.2004.01.007}, language = {en}, }
Henri Gouin. Adiabatic waves along interfacial layers near the critical point. Comptes Rendus. Mécanique, Volume 332 (2004) no. 4, pp. 285-292. doi : 10.1016/j.crme.2004.01.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.01.007/
[1] Thermodynamique de la capillarité dans l'hypothèse d'une variation continue de densité, Arch. Néerlandaises, Volume 28 ( 1894–1895 ), pp. 121-209
[2] Free energy of a non-uniform system III, J. Chem. Phys., Volume 31 (1959), pp. 688-699
[3] The Critical Point, Taylor & Francis, London, 1996
[4] Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rat. Mech. Anal., Volume 81 (1983), pp. 301-315
[5] Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium, J. Appl. Math. Mech. (PMM), Volume 51 (1987), pp. 777-784
[6] Molecular Theory of Capillarity, Clarendon Press, Oxford, 1984
[7] Equations of motions of thermocapillary fluids, C. R. Acad. Sci. Paris, Ser. II, Volume 306 (1988), pp. 99-104
[8] Thermodynamic form of the equation of motion for perfect fluids of grade n, C. R. Acad. Sci. Paris Ser. II, Volume 305 (1987), pp. 833-838
[9] Non-isothermal liquid-vapour interfaces, J. Méc. Théor. Appl., Volume 7 (1988), pp. 689-718
[10] Material waves of a fluid in the vicinity of the critical point (S. Morioka; L. Wijngaarden, eds.), Symposium on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems, Kluwer Academic, Netherlands, 1995
[11] Leçons sur la propagation des ondes et les équations de l'hydrodynamique, Chelsea, New York, 1949
[12] Nonlinear hyperbolic fields and waves (T. Ruggeri, ed.), Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Math., vol. 1640, Springer-Verlag, Berlin, 1996
[13] Y. Garrabos, private communication, 2003
Cité par Sources :
Commentaires - Politique