The contact between a liquid and an elastic solid generates a stress vector depending on the curvature tensor in each point of the separating surface. For nanometer values of the mean curvature and for suitable materials, the stress vector takes significant amplitude on the surface. Although the surface average action of the liquid on the solid is the hydrostatic pressure, the local strain generates torques tending to regularize the surface undulations and asperities.
Accepté le :
Publié le :
Henri Gouin 1
@article{CRMECA_2009__337_4_218_0, author = {Henri Gouin}, title = {Elastic effects of liquids on surface physics}, journal = {Comptes Rendus. M\'ecanique}, pages = {218--225}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2009}, doi = {10.1016/j.crme.2009.04.005}, language = {en}, }
Henri Gouin. Elastic effects of liquids on surface physics. Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 218-225. doi : 10.1016/j.crme.2009.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.04.005/
[1] Critical point wetting, J. Chem. Phys., Volume 66 (1977), pp. 3667-3672
[2] Wetting: Statics and dynamics, Rev. Mod. Phys., Volume 57 (1985), pp. 827-863
[3] Molecular Theory of Capillarity, Clarendon Press, Oxford, 1984
[4] Intermolecular Forces, Academic Press, New York, 1992
[5] Thermodynamique, Masson, Paris, 1964
[6] Energy of interaction between solid surfaces and liquids, J. Phys. Chem. B, Volume 102 (1998), pp. 1212-1218
[7] La méthode des puissances virtuelles en mécanique des milieux continus, J. Mécanique, Volume 12 (1973), pp. 235-274
[8] The method of virtual power in continuum mechanics – Application to coupled fields, Acta Mechanica, Volume 35 (1980), pp. 1-70
[9] Mathematical principles of classical fluid mechanics (S. Flügge, ed.), Encyclopedia of Physics VIII/1, Springer, Berlin, 1960
[10] Connection between the energy equation and the motion equation in Korteweg's theory of capillarity, C. R. Acad. Sci. Paris II, Volume 300 (1985), pp. 231-234
[11] The limit conditions for a fluid described by the second gradient theory: The case of capillarity, C. R. Acad. Sci. Paris II, Volume 309 (1989), pp. 497-502
[12] La théorie du second gradient et la capillarité, C. R. Acad. Sci. Paris, Volume 274 (1972), pp. 1571-1573
[13] Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004), pp. 157-258
[14] Revisiting elastic interactions between steps on vicinal surfaces: The buried dipole model, Phys. Rev. Lett., Volume 92 (2004), p. 256104
[15] Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1984
[16] A new approach for the limit to tree height using a liquid nanolayer model, Continuum Mech. Thermodyn., Volume 20 (2008), pp. 317-329
Cité par Sources :
Commentaires - Politique