Comptes Rendus
Elastic effects of liquids on surface physics
Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 218-225.

The contact between a liquid and an elastic solid generates a stress vector depending on the curvature tensor in each point of the separating surface. For nanometer values of the mean curvature and for suitable materials, the stress vector takes significant amplitude on the surface. Although the surface average action of the liquid on the solid is the hydrostatic pressure, the local strain generates torques tending to regularize the surface undulations and asperities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.04.005
Mots clés : Contact interaction, Surface energy, Surface stresses, Solid–liquid contact, Surface roughness

Henri Gouin 1

1 University of Aix-Marseille & M2P2, C.N.R.S. U.M.R. 6181, case 322, avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France
@article{CRMECA_2009__337_4_218_0,
     author = {Henri Gouin},
     title = {Elastic effects of liquids on surface physics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {218--225},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crme.2009.04.005},
     language = {en},
}
TY  - JOUR
AU  - Henri Gouin
TI  - Elastic effects of liquids on surface physics
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 218
EP  - 225
VL  - 337
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2009.04.005
LA  - en
ID  - CRMECA_2009__337_4_218_0
ER  - 
%0 Journal Article
%A Henri Gouin
%T Elastic effects of liquids on surface physics
%J Comptes Rendus. Mécanique
%D 2009
%P 218-225
%V 337
%N 4
%I Elsevier
%R 10.1016/j.crme.2009.04.005
%G en
%F CRMECA_2009__337_4_218_0
Henri Gouin. Elastic effects of liquids on surface physics. Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 218-225. doi : 10.1016/j.crme.2009.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.04.005/

[1] J.W. Cahn Critical point wetting, J. Chem. Phys., Volume 66 (1977), pp. 3667-3672

[2] P.G. de Gennes Wetting: Statics and dynamics, Rev. Mod. Phys., Volume 57 (1985), pp. 827-863

[3] J.S. Rowlinson; B. Widom Molecular Theory of Capillarity, Clarendon Press, Oxford, 1984

[4] J. Israelachvili Intermolecular Forces, Academic Press, New York, 1992

[5] Y. Rocard Thermodynamique, Masson, Paris, 1964

[6] H. Gouin Energy of interaction between solid surfaces and liquids, J. Phys. Chem. B, Volume 102 (1998), pp. 1212-1218

[7] P. Germain La méthode des puissances virtuelles en mécanique des milieux continus, J. Mécanique, Volume 12 (1973), pp. 235-274

[8] G.A. Maugin The method of virtual power in continuum mechanics – Application to coupled fields, Acta Mechanica, Volume 35 (1980), pp. 1-70

[9] J. Serrin Mathematical principles of classical fluid mechanics (S. Flügge, ed.), Encyclopedia of Physics VIII/1, Springer, Berlin, 1960

[10] P. Casal; H. Gouin Connection between the energy equation and the motion equation in Korteweg's theory of capillarity, C. R. Acad. Sci. Paris II, Volume 300 (1985), pp. 231-234

[11] P. Seppecher The limit conditions for a fluid described by the second gradient theory: The case of capillarity, C. R. Acad. Sci. Paris II, Volume 309 (1989), pp. 497-502

[12] P. Casal La théorie du second gradient et la capillarité, C. R. Acad. Sci. Paris, Volume 274 (1972), pp. 1571-1573

[13] P. Müller; A. Saul Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004), pp. 157-258

[14] G. Prévot; B. Croset Revisiting elastic interactions between steps on vicinal surfaces: The buried dipole model, Phys. Rev. Lett., Volume 92 (2004), p. 256104

[15] Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1984

[16] H. Gouin A new approach for the limit to tree height using a liquid nanolayer model, Continuum Mech. Thermodyn., Volume 20 (2008), pp. 317-329

Cité par Sources :

Commentaires - Politique