[Détermination, par la méthode capacitive, de la teneur en eau liquide et de la constante diélectrique dans un milieu poreux]
A capacitive sensor-based apparatus has been settled to determine the liquid water amount and dielectric constant in consolidated porous media. This technique relies on the dielectric properties of water, air, and mineral substrate. The experimental procedure is described for successively oven-dried samples at 323 K. It allows us to determine the sample dielectric constant as a function of the sample water amount. For limestones from Caen region, an affine relationship is found at 293 K. This is then compared with other empirical soils data and with existing homogeneisation techniques applied to undeformable heterogeneous dielectrics.
Un dispositif de sonde capacitive a été mis au point pour déterminer la teneur en eau liquide et la constante diélectrique dans un milieu poreux consolidé. Cette technique utilise les propriétés diélectriques de l'eau, de l'air, et du substrat minéral. Le procédé expérimental est décrit pour des échantillons séchés au four à 323 K. On peut alors évaluer la constante diélectrique de l'échantillon en fonction de sa teneur en eau. On trouve une relation affine dans le cas des pierres calcaires de Caen à 293 K. Ceci est ensuite mis en perspective avec d'autres résultats empiriques obtenus sur des sols ainsi qu'avec des modèles classiques d'homogénéisation de diélectriques hétérogènes et indéformables.
Accepté le :
Publié le :
Mots-clés : Milieux poreux, Teneur en eau, Eau interstitielle, Diélectrique, Capteur capacitif, Homogénéisation
Teddy Fen-Chong 1 ; Antonin Fabbri 1 ; Jean-Pierre Guilbaud 1 ; Olivier Coussy 1
@article{CRMECA_2004__332_8_639_0, author = {Teddy Fen-Chong and Antonin Fabbri and Jean-Pierre Guilbaud and Olivier Coussy}, title = {Determination of liquid water content and dielectric constant in porous media by the capacitive method}, journal = {Comptes Rendus. M\'ecanique}, pages = {639--645}, publisher = {Elsevier}, volume = {332}, number = {8}, year = {2004}, doi = {10.1016/j.crme.2004.02.028}, language = {en}, }
TY - JOUR AU - Teddy Fen-Chong AU - Antonin Fabbri AU - Jean-Pierre Guilbaud AU - Olivier Coussy TI - Determination of liquid water content and dielectric constant in porous media by the capacitive method JO - Comptes Rendus. Mécanique PY - 2004 SP - 639 EP - 645 VL - 332 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2004.02.028 LA - en ID - CRMECA_2004__332_8_639_0 ER -
%0 Journal Article %A Teddy Fen-Chong %A Antonin Fabbri %A Jean-Pierre Guilbaud %A Olivier Coussy %T Determination of liquid water content and dielectric constant in porous media by the capacitive method %J Comptes Rendus. Mécanique %D 2004 %P 639-645 %V 332 %N 8 %I Elsevier %R 10.1016/j.crme.2004.02.028 %G en %F CRMECA_2004__332_8_639_0
Teddy Fen-Chong; Antonin Fabbri; Jean-Pierre Guilbaud; Olivier Coussy. Determination of liquid water content and dielectric constant in porous media by the capacitive method. Comptes Rendus. Mécanique, Volume 332 (2004) no. 8, pp. 639-645. doi : 10.1016/j.crme.2004.02.028. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.028/
[1] Non-linear binding and the diffusion–migration test, Transport in Porous Media, Volume 53 (2003), pp. 51-74
[2] The premelting of ice and its environmental consequences, Rep. Progr. Phys., Volume 58 (1995), pp. 115-167
[3] A capacitive soil moisture sensor, J. Hydrology, Volume 185 (1996), pp. 137-146
[4] Free and/or bound water by dielectric measurements, Food Chem., Volume 82 (2003), pp. 29-34
[5] Dielectric properties and influence of conductivity in soils at one to fifty megahertz, Soil Sci. Soc. Am. J., Volume 54 (1990), pp. 332-341
[6] Dielectric properties and structure of water at room temperature: new experimental data in 5 Hz–13 MHz frequency range, Phys. Chem. Earth (A), Volume 25 (2000) no. 2, pp. 201-207
[7] Time domain reflectometry as a tool to understand the dielectric response of volcanic soils, Geoderma, Volume 2025 (2003), pp. 1-18
[8] T. Zakri, Contribution à l'étude des propriétés diélectriques de matériaux poreux en vue de l'estimation de leur teneur en eau : modèles de mélange et résultats expérimentaux, Ph.D. thesis, Institut National Polytechnique de Grenoble, October 1997
[9] Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resources Res., Volume 16 (1980) no. 3, pp. 574-582
[10] Dielectric water content sensors: time domain versus frequency domain, Symposium and Workshop on Time Domain Reflectometry in Environmental Infrastructure and Mining Application, September 1994 , pp. 23-33
[11] Méthodes diélectriques de mesure de la teneur en eau dans les matériaux de génie civil, Journées de Physique, Les Arcs, 14–17 décembre 1987 (G. Raimbault, ed.) ( December 1988 ), pp. 157-164
[12] Mesure de l'humidité des sols par une méthode capacitive : analyse des facteurs influençant la mesure, Agronomie, Volume 13 (1993), pp. 57-73
[13] Soil water content measurement with a high-frequency capacitance sensor, J. Agric. Engrg. Res., Volume 71 (1998), pp. 395-403
[14] N.L. Tran, P. Chaigne, A. Philippe, Mesure des teneurs en eau des sols par les méthodes électriques – étude d'une méthode capacitive, Rapport de recherche des lpc n∘5, Laboratoire Central des Ponts & Chaussées, Paris, 1970
[15] Capacitive sensor for water content measurements in centrifuged porous media (J. Garnier; L. Thorel; E. Haza, eds.), International Symposium on Physical Modelling and Testing in Environmental Geotechnics, La Baule, France, Laboratoire Central des Ponts & Chaussées, 15–17 may, 2000, pp. 11-18
[16] SDEC FRANCE, Z.I. de la Gare – 37310 Reignac sur Indre, France, Notice d'utilisation : humidimètre pour sols et sables HMS9000 – Document n∘9992214, July 1999
[17] The dielectric properties of water in its different states of interaction, J. Solution Chem., Volume 26 (1997) no. 11, pp. 1049-1112
[18] Cours de Physique de Berkeley: Électricité et Magnétisme, Dunod, 1998
[19] Handbook of Chemistry and Physics 2001–2002, CRC Press, 2001
[20] Random Heterogeneous Materials – Microstructure and Macroscopic Properties, Springer, 2002
[21] Introduction à la micromécanique des milieux poreux, Presses de l'École Nationale des Ponts & Chaussées, 2003
[22] Homogénéisation des milieux diélectriques et conducteurs (M. Bornert; P. Gilormini; T. Bretheau, eds.), École Thématique du CNRS : Homogénéisation en Mécanique et Physique des Matériaux, La Londe les Maures 18–29 août, 2003
- Design Implementation of Nano Cavity TFET Based Smart Sensor for Water Quality, Sensing and Imaging, Volume 26 (2025) no. 1 | DOI:10.1007/s11220-025-00540-6
- Rapid Near-Patient Impedimetric Sensing Platform for Prostate Cancer Diagnosis, ACS Omega, Volume 9 (2024) no. 12, p. 14580 | DOI:10.1021/acsomega.4c00843
- Surface calibration of electromagnetic properties to simultaneously consider water and chloride contents in concrete both with and without slag, Construction and Building Materials, Volume 417 (2024), p. 135176 | DOI:10.1016/j.conbuildmat.2024.135176
- Analyzing the effects of polymeric dielectric materials on micro capacitive pressure sensors: A model incorporating displacement-dependent porosity, Heliyon, Volume 10 (2024) no. 9, p. e30626 | DOI:10.1016/j.heliyon.2024.e30626
- The Measurement of Unfrozen Water Content and SFCC of a Coarse-Grained Volcanic Soil, Journal of Testing and Evaluation, Volume 50 (2022) no. 6, p. 3183 | DOI:10.1520/jte20210049
- A methodology to establish freezing characteristics of partially saturated sands, Cold Regions Science and Technology, Volume 189 (2021), p. 103333 | DOI:10.1016/j.coldregions.2021.103333
- Application of time-domain gating technique in water content measurement of gas–liquid two-phase flow, Review of Scientific Instruments, Volume 92 (2021) no. 9, p. 094702 | DOI:10.1063/5.0055810
- An innovative IoT-oriented prototype platform for the management and valorisation of the organic fraction of municipal solid waste, Journal of Cleaner Production, Volume 247 (2020), p. 119618 | DOI:10.1016/j.jclepro.2019.119618
- Calibration and Validation of a Low-Cost Capacitive Moisture Sensor to Integrate the Automated Soil Moisture Monitoring System, Agriculture, Volume 9 (2019) no. 7, p. 141 | DOI:10.3390/agriculture9070141
- Effect of supercooling on the instantaneous freezing dilation of cement-based porous materials, Journal of Building Physics, Volume 40 (2016) no. 2, p. 101 | DOI:10.1177/1744259116649321
- Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study, Materials and Structures, Volume 48 (2015) no. 1-2, p. 369 | DOI:10.1617/s11527-013-0189-z
- A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls, Materials, Volume 7 (2014) no. 4, p. 3002 | DOI:10.3390/ma7043002
- Hand-held unit for liquid-type recognition, based on interdigital capacitor, Measurement, Volume 51 (2014), p. 289 | DOI:10.1016/j.measurement.2014.02.012
- Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging, Sensors, Volume 14 (2014) no. 2, p. 2280 | DOI:10.3390/s140202280
- Modeling and simulations of the amplitude–frequency response of transmission line type resonators filled with lossy dielectric fluids, Sensors and Actuators A: Physical, Volume 216 (2014), p. 147 | DOI:10.1016/j.sna.2014.05.006
- Indirect measurement of the ice content curve of partially frozen cement based materials, Cold Regions Science and Technology, Volume 90-91 (2013), p. 14 | DOI:10.1016/j.coldregions.2013.03.002
- On-line fingerprinting of fluids using coaxial stub resonator technology, Sensors and Actuators B: Chemical, Volume 163 (2012) no. 1, p. 90 | DOI:10.1016/j.snb.2012.01.012
- Influence of dielectric constant of polymerization medium on processability and ammonia gas sensing properties of polyaniline, Bulletin of Materials Science, Volume 34 (2011) no. 2, p. 261 | DOI:10.1007/s12034-011-0058-8
- A study of freezing behavior of cementitious materials by poromechanical approach, International Journal of Solids and Structures, Volume 48 (2011) no. 22-23, p. 3267 | DOI:10.1016/j.ijsolstr.2011.07.018
- Investigation of Water to Ice Phase Change in Porous Media by Ultrasonic and Dielectric Measurements, Journal of Cold Regions Engineering, Volume 23 (2009) no. 2, p. 69 | DOI:10.1061/(asce)0887-381x(2009)23:2(69)
- Are Deicing Salts Necessary to Promote Scaling in Concrete?, Journal of Engineering Mechanics, Volume 134 (2008) no. 7, p. 589 | DOI:10.1061/(asce)0733-9399(2008)134:7(589)
- Unsaturated poroelasticity for crystallization in pores, Computers and Geotechnics, Volume 34 (2007) no. 4, p. 279 | DOI:10.1016/j.compgeo.2007.02.007
- Dielectric capacity, liquid water content, and pore structure of thawing–freezing materials, Cold Regions Science and Technology, Volume 44 (2006) no. 1, p. 52 | DOI:10.1016/j.coldregions.2005.07.001
- Transient freezing–thawing phenomena in water-filled cohesive porous materials, Cold Regions Science and Technology, Volume 46 (2006) no. 1, p. 12 | DOI:10.1016/j.coldregions.2006.04.001
- Experimental and theoretical investigations of the behaviour of a partially frozen cement paste, Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics (2006), p. 63 | DOI:10.1201/9781439833469.ch7
- Poromechanics of freezing materials, Journal of the Mechanics and Physics of Solids, Volume 53 (2005) no. 8, pp. 1689-1718 | DOI:10.1016/j.jmps.2005.04.001 | Zbl:1120.74447
- Poromechanics of drying and freezing cement-based materials, Revue Européenne de Génie Civil, Volume 9 (2005) no. 5-6, p. 725 | DOI:10.1080/17747120.2005.9692779
Cité par 27 documents. Sources : Crossref, zbMATH
Commentaires - Politique