We consider regular and singular perturbations of the Dirichlet and Neumann boundary value problems for the Helmholtz equation in n-dimensional cylinders. The existence of eigenvalues and their asymptotics are studied.
On considère des perturbations régulières et singulières des problèmes aux limites de Dirichlet et de Neumann pour l'équation de Helmholtz dans les cylindres n-dimensionnels. Sont étudies l'existence des valeurs propres et de leur comportement asymptotique.
Accepted:
Published online:
Mots-clés : Acoustique, Guide d'ondes, Perturbation, Valeur propre
Rustem R. Gadyl'shin 1, 2
@article{CRMECA_2004__332_8_647_0, author = {Rustem R. Gadyl'shin}, title = {On regular and singular perturbations of acoustic and quantum waveguides}, journal = {Comptes Rendus. M\'ecanique}, pages = {647--652}, publisher = {Elsevier}, volume = {332}, number = {8}, year = {2004}, doi = {10.1016/j.crme.2004.03.010}, language = {en}, }
Rustem R. Gadyl'shin. On regular and singular perturbations of acoustic and quantum waveguides. Comptes Rendus. Mécanique, Volume 332 (2004) no. 8, pp. 647-652. doi : 10.1016/j.crme.2004.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.03.010/
[1] On local perturbations of Shrödinger operator in axis, Teor. Mat. Fiz., Volume 132 (2002) no. 1, pp. 97-104 (English translation Theor. Math. Phys., 132, 1, 2002, pp. 976-982)
[2] Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys., Volume 7 (1995), pp. 73-102
[3] Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc., Volume 127 (1997), pp. 1487-1495
[4] Bound states in a locally deformed waveguide: the critical case, Lett. Math. Phys., Volume 39 (1997), pp. 59-68
[5] Bound states in weakly deformed strips and layers, Ann. Inst. H. Poincaré, Volume 2 (2001) no. 3, pp. 553-572
[6] Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window, Ann. Inst. H. Poincaré: Phys. Théor., Volume 65 (1996), pp. 109-123
[7] Asymptotics of bounded states for laterally coupled three-dimensional waveguides, Rep. Math. Phys., Volume 48 (2001), pp. 277-288
[8] Three laterally coupled quantum waveguiedes: breaking of symmetry and resonance asymptotics, J. Phys. A, Volume 36 (2003), pp. 1655-1670
[9] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI, 1992
[10] Surface potentials and the method of matching asymptotic expansions in the problem of the Helmholtz resonator, Algebra Anal., Volume 4 (1992) no. 2, pp. 88-115 (English translation St. Petersburg Math. J., 4, 1, 1993, pp. 273-296)
[11] On acoustic Helmholtz resonator and on its electromagnetic analog, J. Math. Phys., Volume 35 (1994) no. 7, pp. 3464-3481
[12] Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator, Uspekhi Mat. Nauk, Volume 52 (1997) no. 1, pp. 3-76 (English translation Russian Math. Surveys, 52, 1, 1997, pp. 1-72)
[13] Non-Homogeneous Media and Vibration Theory, Springer-Verlag, New York, 1980
[14] On analogs of Helmholtz resonator in averaging theory, Mat. Sb., Volume 193 (2002) no. 11, pp. 43-70 (English translation Sb. Math., 193, 11, 2002, pp. 1611-1638)
Cited by Sources:
Comments - Policy