The antiplane motion of a transversely isotropic piezoelectric half-space is considered. An explicit asymptotic model is derived for the far field of the surface wave. It involves, in particular, a 1D hyperbolic equation for surface shear deformation propagating with the finite wave speed predicted for the first time by J.L. Bleustein and Yu.V. Gulyaev. Neumann and Dirichlet problems are formulated to restore interior mechanical and electric fields. The derivation utilizes asymptotic arguments combined with Lourier symbolic integration. Comparison with the exact solution is presented for surface impact loading.
Le mouvement antiplane d'un demi-espace piézoélectrique transversalement isotrope est considéré. Un modèle asymptotique explicite est dérivé pour le champ lointain de l'onde de surface. Il implique, en particulier, une équation hyperbolique de dimension un pour la déformation de la surface de cisaillement se propageant avec vitesse d'onde finie predite pour la première fois par J.L. Bleustein et Yu.V. Gulyaev. Des problèmes de Neumann et de Dirichlet sont formulés pour reconstituer les champs mécaniques et électriques intérieurs. La dérivation utilise des arguments asymptotiques combinés avec l'intégration symbolique de Lourier. La comparaison avec la solution exacte est présentée pour le chargement d'impact de surface.
Accepted:
Published online:
Mots-clés : Ondes, Asymptotique, Modèle, Champ lointain, Piézoélectrique, L'onde de surface, L'onde de Bleustein–Gulyaev
Julius Kaplunov 1; Leonid Kossovich 2; Alexis Zakharov 1
@article{CRMECA_2004__332_7_487_0, author = {Julius Kaplunov and Leonid Kossovich and Alexis Zakharov}, title = {An explicit asymptotic model for the {Bleustein{\textendash}Gulyaev} wave}, journal = {Comptes Rendus. M\'ecanique}, pages = {487--492}, publisher = {Elsevier}, volume = {332}, number = {7}, year = {2004}, doi = {10.1016/j.crme.2004.03.007}, language = {en}, }
TY - JOUR AU - Julius Kaplunov AU - Leonid Kossovich AU - Alexis Zakharov TI - An explicit asymptotic model for the Bleustein–Gulyaev wave JO - Comptes Rendus. Mécanique PY - 2004 SP - 487 EP - 492 VL - 332 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2004.03.007 LA - en ID - CRMECA_2004__332_7_487_0 ER -
Julius Kaplunov; Leonid Kossovich; Alexis Zakharov. An explicit asymptotic model for the Bleustein–Gulyaev wave. Comptes Rendus. Mécanique, Volume 332 (2004) no. 7, pp. 487-492. doi : 10.1016/j.crme.2004.03.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.03.007/
[1] A note on elastic surface waves, J. Geophys. Res., Volume 71 (1966), pp. 5480-5481
[2] J.D. Kaplunov, L.Yu. Kossovitch, An asymptotic model for the Rayleigh wave far-field in the case of an elastic half-plane, Russian Phys. Dokl., in press
[3] A new surface wave in piezoelectric materials, Appl. Phys. Lett., Volume 13 (1968), pp. 412-413
[4] Surface electroelastic waves in solids, JETP Lett., Volume 9 (1969), pp. 63-64
[5] Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, MA, 1968
[6] Spatial Problems in Elastic Theory, Gostechizdat, Moscow, 1955
[7] Dynamics of Thin Walled Elastic Bodies, Academic Press, San-Diego, 1998
[8] Mathematical Methods for Scientists and Engineers, University Science, Sausalito, CA, 2003
Cited by Sources:
Comments - Policy