This Note deals with the development of mathematical methods for the closure of the mass conservation equation for macroscopic hydrodynamical models of traffic flow on roads. The closure is obtained by a phenomenological model, relating the local mean velocity to local density earlier in time. An evolution equation is obtained for the flux and a stability analysis is performed; this qualitatively describes some features of congested flow.
Cette Note est dédiée au dévelopement d'une méthodes mathématiques pour la fermeture des équations macroscopiques de la conservation de la masse, intervenant dans la modélisation du trafic des véhicules. La fermeture est obtenue en utilisant un modèle phénoménologique approprié pour relier la vitesse moyenne locale à la densité locale (avec retard en temp). Une équation pour le flux est derivée et une analyse de stabilité est conduite.
Accepted:
Published online:
Mots-clés : Milieux continus, Flux du traffic, Models continues, Sciences non-linéaires
Vincenzo Coscia 1
@article{CRMECA_2004__332_8_585_0, author = {Vincenzo Coscia}, title = {On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {585--590}, publisher = {Elsevier}, volume = {332}, number = {8}, year = {2004}, doi = {10.1016/j.crme.2004.03.016}, language = {en}, }
TY - JOUR AU - Vincenzo Coscia TI - On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow JO - Comptes Rendus. Mécanique PY - 2004 SP - 585 EP - 590 VL - 332 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2004.03.016 LA - en ID - CRMECA_2004__332_8_585_0 ER -
Vincenzo Coscia. On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow. Comptes Rendus. Mécanique, Volume 332 (2004) no. 8, pp. 585-590. doi : 10.1016/j.crme.2004.03.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.03.016/
[1] Mathematical models for vehicular traffic, Surveys Math. Ind., Volume 6 (1996), pp. 215-239
[2] Traffic and related self-driven many-particle systems, Rev. Modern Phys., Volume 73 (2001), pp. 1067-1141
[3] From the modelling of driver's behaviour to hydrodynamic models and problems of traffic flow, Nonlinear Anal., Volume 3 (2002), pp. 339-363
[4] On the mathematical theory of vehicular traffic flow I – Fluid dynamic and kinetic modeling, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1801-1844
[5] On a diffusively corrected kinematic-wave traffic flow model with changing road surface conditions, Math. Models Methods Appl. Sci., Volume 13 (2003), pp. 1767-1800
[6] Simplified dynamics and optimization of large scale traffic networks, Math. Models Methods Appl. Sci., Volume 14 (2004)
[7] Node and link models for network traffic flow simulation, Math. Comput. Modelling, Volume 35 (2002), pp. 643-656 (Special Issue on Traffic Flow Modelling)
[8] Modelling vehicular traffic flow on networks using macroscopic models (Vilsmeier et al., eds.), Finite Volumes for Complex Applications – Problems and Perspectives, Duisburg Press, Duisburg, 1999, pp. 551-559
[9] From experiments to hydrodynamic traffic flow models. I – Modelling and parameter identification, Math. Comput. Modelling, Volume 37 (2003), pp. 1435-1442
[10] Boundary value syeady solutions of a class of hydrodynamic models for vehicular traffic flow, Math. Comput. Modelling, Volume 38 (2003), pp. 367-383
[11] Experimental properties of complexity in traffic flow, Phys. Rev. E, Volume 53 (1996), pp. 4275-4278
[12] Experimental features of self-organization in traffic flow, Phys. Rev. Lett., Volume 81 (1998), pp. 3797-3800
[13] Nonlinear hydrodinamic models of traffic flow modelling and mathematical problems, Math. Comput. Modelling, Volume 29 (1999), pp. 83-95
[14] Resurrection of “second order models” of traffic flow, SIAM J. Appl. Math., Volume 60 (2000), pp. 916-938
[15] On a 2×2 hyperbolic traffic flow model, Math. Comput. Modelling, Volume 35 (2002), pp. 683-688 (Special Issue on Traffic Flow Modelling)
[16] Limit of a collection of dynamical systems: an application to modelling the flow of traffic, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1381-1400
[17] Nonlinear models of traffic flow. New frameworks of mathematical kinetic theory, C. R. Mécanique, Volume 331 (2003), pp. 817-822
[18] Generalized kinetic (Boltzmann) models: mathematical structures and applications, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 579-604
Cited by Sources:
Comments - Policy