Comptes Rendus
Modelling of unsteady 2D cavity flows using the Logvinovich independence principle
[Modélisation des écoulements cavitants bidimensionnels basée sur le principe d'indépendance de Logvinovich.]
Comptes Rendus. Mécanique, Volume 332 (2004) no. 10, pp. 827-833.

Une modélisation simple des écoulements cavitants bidimensionnels est proposée. Elle est basée sur le principe d'indépendance de Logvinovich qui suppose que chaque section de cavité se comporte indépendamment des voisines. L'équation d'évolution de l'interface est présentée dans cette Note. Elle prend essentiellement en compte un effet de masse ajoutée et est comparable à l'équation de Rayleigh–Plesset qui régit l'évolution d'une bulle sphérique. La dynamique d'une cavité bidimensionnelle est contrôlée par la différence entre la pression de cavité et la pression à l'infini. Le modèle est en bon accord avec la solution de Tulin pour un écoulement supercavitant stationnaire et est facilement applicable à une configuration instationnaire.

A simple model for two-dimensional cavity flows is presented. It is based upon the Logvinovich independence principle. Each section of the cavity is assumed to behave independently of the neighbouring ones. The equation of evolution of the cavity interface is derived. It mainly takes into account an added mass effect and is similar to the well-known Rayleigh–Plesset equation relative to spherical bubbles. The dynamics of the 2D cavity is controlled by the pressure difference between infinity and the cavity. The model proves to be in good agreement with Tulin's solution for a steady cavity flow and easily applicable to unsteady cavity flows.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2004.06.005
Keywords: Computational fluid mechanics, Two-phase flows, Cavitation
Mots-clés : Mécanique des fluides numérique, Écoulements diphasiques, Cavitation

Christian Pellone 1 ; Jean-Pierre Franc 1 ; Mickaël Perrin 1

1 Laboratoire des écoulements géophysiques et industriels (INPG–CNRS, UMR 5519–UJF), BP 53, 38041 Grenoble cedex 9, France
@article{CRMECA_2004__332_10_827_0,
     author = {Christian Pellone and Jean-Pierre Franc and Micka\"el Perrin},
     title = {Modelling of unsteady {2D} cavity flows using the {Logvinovich} independence principle},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {827--833},
     publisher = {Elsevier},
     volume = {332},
     number = {10},
     year = {2004},
     doi = {10.1016/j.crme.2004.06.005},
     language = {en},
}
TY  - JOUR
AU  - Christian Pellone
AU  - Jean-Pierre Franc
AU  - Mickaël Perrin
TI  - Modelling of unsteady 2D cavity flows using the Logvinovich independence principle
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 827
EP  - 833
VL  - 332
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2004.06.005
LA  - en
ID  - CRMECA_2004__332_10_827_0
ER  - 
%0 Journal Article
%A Christian Pellone
%A Jean-Pierre Franc
%A Mickaël Perrin
%T Modelling of unsteady 2D cavity flows using the Logvinovich independence principle
%J Comptes Rendus. Mécanique
%D 2004
%P 827-833
%V 332
%N 10
%I Elsevier
%R 10.1016/j.crme.2004.06.005
%G en
%F CRMECA_2004__332_10_827_0
Christian Pellone; Jean-Pierre Franc; Mickaël Perrin. Modelling of unsteady 2D cavity flows using the Logvinovich independence principle. Comptes Rendus. Mécanique, Volume 332 (2004) no. 10, pp. 827-833. doi : 10.1016/j.crme.2004.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.06.005/

[1] J.P. Franc; J.M. Michel Fundamentals of Cavitation, Kluwer Academic, 2004

[2] S.A. Kinnas The prediction of unsteady sheet cavitation (J.M. Michel; H. Kato, eds.), Proc. 3rd Int. Symp. on Cavitation, vol. 1, Grenoble, France, 1998, pp. 19-36

[3] L. Diéval; C. Pellone; J.P. Franc; M. Arnaud Une technique de suivi d'interfaces pour la modélisation de la cavitation par poche, C. R. Acad. Sci. Paris, Sér. IIb, Volume 328 (2000), pp. 809-812

[4] Workshop on physical models and CFD tools for computation of cavitating flows (Y. Tsujimoto, ed.), 5th Int. Symp. on Cavitation, Osaka, Japan, 2003

[5] A. Kubota; H. Kato; H. Yamaguchi A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section, J. Fluid Mech., Volume 240 (1992), pp. 59-96

[6] G.V. Logvinovich Hydrodynamics of Free Surface Flows, Nauvoka Dunka, Kiev, 1969 (in Russian)

[7] G.V. Logvinovich; V.V. Serebryakov The Methods for the Calculation of the Shape of Slender Axisymmetric Cavities, Hydromechanics, Nauvoka Dunka, Kiev, 1975 (in Russian)

[8] V.N. Semenenko Artificial Supercavitation. Physics and Calculation, VKI/RTO Special Course on Supercavitation, Von Karman Institute for Fluid Dynamics, Brussels, 2001

[9] A. Vasin The Principle of Independence of the Cavity Sections Expansion as the Basis for Investigation on Cavitation Flows, VKI/RTO Special Course on Supercavitation, Von Karman Institute for Fluid Dynamics, Brussels, 2001

[10] M.P. Tulin, Steady two-dimensional cavity flows about slender bodies, DTMB Rept. 834, 1953

  • Kangjian Wang; Guang Rong; Qing Mu; Hongqiao Yin Random disturbance in cavity boundaries, Journal of Physics: Conference Series, Volume 1721 (2021) no. 1, p. 012059 | DOI:10.1088/1742-6596/1721/1/012059
  • Anran Chen; Xiangdong Li; Lanwei Zhou; Yangziyi Ji Study of liquid spurt caused by hydrodynamic ram in liquid-filled container, International Journal of Impact Engineering, Volume 144 (2020), p. 103658 | DOI:10.1016/j.ijimpeng.2020.103658
  • M.A. Tehrani; R.D. Firouz-Abadi An efficient system identification approach to estimate unsteady loads on cavitator plates, Ocean Engineering, Volume 207 (2020), p. 107444 | DOI:10.1016/j.oceaneng.2020.107444
  • Changchang Wang; Guoyu Wang; Mindi Zhang; Biao Huang; Deming Gao Numerical simulation of ultra-high speed supercavitating flows considering the effects of the water compressibility, Ocean Engineering, Volume 142 (2017), p. 532 | DOI:10.1016/j.oceaneng.2017.07.041
  • Wang Zou; Kai-ping Yu; Roger Arndt Modeling and simulations of supercavitating vehicle with planing force in the longitudinal plane, Applied Mathematical Modelling, Volume 39 (2015) no. 19, p. 6008 | DOI:10.1016/j.apm.2015.01.040
  • Kai-ping Yu; Wang Zou; Roger Arndt; Guang Zhang Supercavity Motion With Inertial Force in the Vertical Plane, Journal of Hydrodynamics, Volume 24 (2012) no. 5, p. 752 | DOI:10.1016/s1001-6058(11)60300-4
  • Bo-Zhi Gong; Bing-Jian Zhang; Hui Zhang NEMD study for supercavitation mechanism with underwater object, Physics Letters A, Volume 372 (2008) no. 47, p. 7063 | DOI:10.1016/j.physleta.2008.10.024
  • Jean-Pierre Franc The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation, Fluid Dynamics of Cavitation and Cavitating Turbopumps, Volume 496 (2007), p. 1 | DOI:10.1007/978-3-211-76669-9_1

Cité par 8 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: