Comptes Rendus
A multigrid pseudo-spectral method for incompressible Navier–Stokes flows
Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 59-64.

A pseudo-spectral solver with multigrid acceleration for the numerical prediction of incompressible non-isothermal flows is presented. The spatial discretization is based on a Chebyshev collocation method on Gauss–Lobatto points and for the discretization in time the second-order backward differencing scheme (BDF2) is employed. The multigrid method is invoked at the level of algebraic system solving within a pressure-correction method. The approach combines the high accuracy of spectral methods with efficient solver properties of multigrid methods. The capabilities of the proposed scheme are illustrated by a buoyancy driven cavity flow as a standard benchmark case.

Published online:
DOI: 10.1016/j.crme.2004.09.016
Keywords: Computational fluid mechanics, Multigrid methods, Pseudo-spectral methods, Incompressible flows

Krastan Krastev 1; Michael Schäfer 1

1 Department of Numerical Methods in Mechanical Engineering, Darmstadt University of Technology, Petersenstrasse 30, 64287 Darmstadt, Germany
@article{CRMECA_2005__333_1_59_0,
     author = {Krastan Krastev and Michael Sch\"afer},
     title = {A multigrid pseudo-spectral method for incompressible {Navier{\textendash}Stokes} flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {59--64},
     publisher = {Elsevier},
     volume = {333},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crme.2004.09.016},
     language = {en},
}
TY  - JOUR
AU  - Krastan Krastev
AU  - Michael Schäfer
TI  - A multigrid pseudo-spectral method for incompressible Navier–Stokes flows
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 59
EP  - 64
VL  - 333
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2004.09.016
LA  - en
ID  - CRMECA_2005__333_1_59_0
ER  - 
%0 Journal Article
%A Krastan Krastev
%A Michael Schäfer
%T A multigrid pseudo-spectral method for incompressible Navier–Stokes flows
%J Comptes Rendus. Mécanique
%D 2005
%P 59-64
%V 333
%N 1
%I Elsevier
%R 10.1016/j.crme.2004.09.016
%G en
%F CRMECA_2005__333_1_59_0
Krastan Krastev; Michael Schäfer. A multigrid pseudo-spectral method for incompressible Navier–Stokes flows. Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 59-64. doi : 10.1016/j.crme.2004.09.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.016/

[1] D. Gottlieb; S.A. Orzag Numerical Analysis of Spectral Methods: Theory and Applications, SIAM–CMBS, 1977

[2] J.P. Boyd Chebyshev and Fourier Spectral Methods, Dover, 1999

[3] C. Canuto; M.Y. Hussaini; A. Quateroni; T.A. Zang Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988

[4] G.E. Karniadakis; S.J. Sherwin Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press, 1999

[5] R. Peyret Spectral methods for incompressible viscous flow, Appl. Math. Sci., Volume 128 (2002)

[6] W. Hackbusch Multigrid Methods and Applications, Springer, Berlin, 1985

[7] W.L. Briggs; V.E. Henson; S.F. McCormick A Multigrid Tutorial, SIAM, 2000

[8] F. Durst; M. Schäfer A parallel block-structured multigrid method for the prediction of incompressible flows, Int. J. Numer. Methods Fluids, Volume 22 (1996), pp. 549-565

[9] V.V. Shaidurov Multigrid Methods for Finite Elements, Math. Appl., vol. 318, Kluwer Academic, Dordrecht, 1995

[10] P. Droll; M. Schäfer An Pseudo-spectral multi-domain method for incompressible flows, J. Sci. Comput., Volume 17 (2002), pp. 395-405

[11] P. Droll Numerical Simulation of Fluid Flow with Pseudo-Spectral Methods, Shaker Verlag, Aachen, 2002

[12] B. Fornberg A Practical Guide to Pseudospectral Methods, Cambridge University Press, 1991

[13] P.M. Gresho On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, Part 1: Theory, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 587-620

[14] J. van Kan A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput., Volume 7 (1986), pp. 870-891

[15] S. Turek Efficient Solvers for Incompressible Flow Problems, Lecture Notes in Comput. Sci. and Engrg., vol. 5, Springer, 1999

[16] Y. Saad; M.H. Schultz GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., Volume 7 (1986), pp. 856-869

[17] G. de Vahl Davies Natural convection of air in a square cavity. A benchmark numerical solution, Int. J. Numer. Methods Fluids, Volume 3 (1983), pp. 249-264

[18] P. Haldenwang; G. Labrosse; S. Abboudi; M. Deville Chebyshev 3d spectral and 2d pseudospectral solvers for the Helmholtz equation, J. Comput. Phys., Volume 5 (1984), pp. 115-128

Cited by Sources:

Comments - Policy