[Flow visualisation in a Taylor–Dean open system]
Results of flow visualisation in a Taylor–Dean open device are given. Observations made at the inlet, the core and the outlet of the flow show that different flow patterns can develop simultaneously. The formation and the growth of the structures observed versus control parameters are described.
L'écoulement dont nous présentons l'étude est produit dans un système de deux cylindres coaxiaux, ouvert transversalement. Il résulte de la combinaison de l'écoulement induit par la rotation du cylindre intérieur et de celui provenant de l'extérieur sous l'effet d'une pompe. Les instabilités qui s'y produisent lors de la transition laminaire-turbulent et les régimes d'écoulement auxquels elles donnent lieu sont relevés pour une large gamme de τ, le rapport des débits dus au gradient de pression azimutal et au gradient de vitesse radial.
Accepted:
Published online:
Keywords: Fluid mechanics, Open flow, Flow patterns, Visualisation, Chaos, Taylor–Dean
Aomar Ait Aider 1; Salaheddine Skali-Lami 2; Jean Pierre Brancher 2
@article{CRMECA_2005__333_2_197_0, author = {Aomar Ait Aider and Salaheddine Skali-Lami and Jean Pierre Brancher}, title = {Visualisation de l'\'ecoulement de {Taylor{\textendash}Dean} ouvert}, journal = {Comptes Rendus. M\'ecanique}, pages = {197--203}, publisher = {Elsevier}, volume = {333}, number = {2}, year = {2005}, doi = {10.1016/j.crme.2004.11.005}, language = {fr}, }
TY - JOUR AU - Aomar Ait Aider AU - Salaheddine Skali-Lami AU - Jean Pierre Brancher TI - Visualisation de l'écoulement de Taylor–Dean ouvert JO - Comptes Rendus. Mécanique PY - 2005 SP - 197 EP - 203 VL - 333 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2004.11.005 LA - fr ID - CRMECA_2005__333_2_197_0 ER -
Aomar Ait Aider; Salaheddine Skali-Lami; Jean Pierre Brancher. Visualisation de l'écoulement de Taylor–Dean ouvert. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 197-203. doi : 10.1016/j.crme.2004.11.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.11.005/
[1] The stability of viscous flow between horizontal concentric cylinders, Proc. Roy. Soc. London Ser. A, Volume 251 (1959), pp. 76-91
[2] The stability of viscous flow between rotating cylinders with a pressure gradient acting around the cylinders, J. Fluid Mech., Volume 6 (1959), pp. 462-468
[3] Hydrodynamic and Hydromagnetic Stability, Oxford University, London, 1961 (pp. 343–361)
[4] The effect of a transverse pressure gradient on the stability of Couette flow, Z. Angew. Math. Phys., Volume 15 (1964), pp. 573-581
[5] Oscillatory modes of instability for flow between rotating cylinders with a transverse pressure gradient, Z. Angew. Math. Phys., Volume 22 (1971), pp. 680-690
[6] Pattern formation in the flow between two horizontal coaxial cylinders with a partially filled gap, Phys. Rev. A, Volume 38 (1988), pp. 4752-4760
[7] Stability of Taylor–Dean flow in a small gap between rotating cylinders, J. Fluid Mech., Volume 243 (1992), pp. 443-455
[8] On a modified Taylor–Dean stability problem where the small gap between the cylinders varies in the azimuthal direction, Phys. Fluids, Volume 16 (2004) no. 3, pp. 546-550
[9] Curvature- and rotation-induced instabilities in channel flow, J. Fluid Mech., Volume 210 (1990), pp. 537-563
[10] Traveling waves and chaos in convection in binary fluid mixtures, Phys. Rev. Lett., Volume 55 (1985) no. 5, pp. 496-499
[11] Recirculation eddies in the flow between two horizontal coaxial cylinders with a partially filled gap, Eur. J. Mech. B Fluids, Volume 10 (1991) no. 4, pp. 335-348
[12] Flow in the half filled annulus between horizontal concentric cylinders in relative rotation, J. Fluid Mech., Volume 213 (1990), pp. 149-169
[13] Secondary instability of a roll pattern and transition to spatio-temporal chaos in the Taylor–Dean system, Phys. Rev. E, Volume 58 (1998) no. 3, pp. 3089-3097
[14] Dynamics of spatio-temporal defects in the Taylor–Dean system, Eur. Phys. J. B, Volume 13 (2000), pp. 141-155
[15] Nonlinear analysis of instability modes in the Taylor–Dean system, Phys. Fluids, Volume 6 (1994) no. 11, pp. 3630-3642
[16] Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckaus instability, J. Fluid Mech., Volume 228 (1991), pp. 661-691
[17] Structures dissipative et turbulence faible, Aléa Saclay, 1990
Cited by Sources:
Comments - Policy