Several existing numerical studies show that the effective linear properties of random composites can be accurately estimated using small volumes subjected to periodic boundary conditions – more suitable than homogeneous strain or stress boundary conditions – providing that a sufficient number of realizations are considered. Introducing the concept of periodization of random media, this Note gives a new definition of representative volume element which leads to estimates of its minimum size in agreement with existing theoretical results. A qualitative convergence criterion for the numerical simulations is proposed and illustrated with finite element computations.
Plusieurs simulations numériques montrent que les propriétés effectives linéaires des matériaux aléatoires peuvent être calculées sur de petits échantillons soumis à des conditions limites périodiques – plus adaptées que les conditions uniformes en contrainte ou en déformation – pourvu que le nombre d'échantillons considérés soit suffisamment grand. En introduisant le concept de périodisation des milieux aléatoires, cette Note donne une nouvelle définition du volume élémentaire représentatif qui conduit à des estimations de sa taille minimale conformes aux résultats théoriques existants. Un critère qualitatif de convergence des simulations numériques est proposé et illustré par des calculs par éléments finis.
Accepted:
Published online:
Mots-clés : Mécanique des solides numérique, Homogénéisation, Périodisation, Milieux aléatoires, Volume élémentaire représentatif
Karam Sab 1; Boumediene Nedjar 1
@article{CRMECA_2005__333_2_187_0, author = {Karam Sab and Boumediene Nedjar}, title = {Periodization of random media and representative volume element size for linear composites}, journal = {Comptes Rendus. M\'ecanique}, pages = {187--195}, publisher = {Elsevier}, volume = {333}, number = {2}, year = {2005}, doi = {10.1016/j.crme.2004.10.003}, language = {en}, }
TY - JOUR AU - Karam Sab AU - Boumediene Nedjar TI - Periodization of random media and representative volume element size for linear composites JO - Comptes Rendus. Mécanique PY - 2005 SP - 187 EP - 195 VL - 333 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2004.10.003 LA - en ID - CRMECA_2005__333_2_187_0 ER -
Karam Sab; Boumediene Nedjar. Periodization of random media and representative volume element size for linear composites. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 187-195. doi : 10.1016/j.crme.2004.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.10.003/
[1] Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, Volume 45 (1997), pp. 1449-1459
[2] Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method, Comput. Methods Appl. Engrg., Volume 153 (1998), pp. 223-257
[3] Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., Volume 40 (2003), pp. 3647-3679
[4] A micromechanics-based nonlocal constitutuve equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, Volume 44 (1996) no. 4, pp. 497-524
[5] Principe de Hill et homogénéisation des matériaux aléatoires, C. R. Acad. Sci Paris, Sér. II, Volume 312 (1991), pp. 1-5
[6] Homogenization of non-linear random media by a duality method. Application to plasticity, Asymptotic Anal., Volume 9 (1994), pp. 311-336
[7] Eléments pour une théorie des milieux poreux, Masson, Paris, 1967
[8] Random heterogeneous media: microstructure and improved bounds on effective properties, Appl. Mech. Rev., Volume 44 (1991), pp. 37-76
[9] Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202
[10] Linear properties of random media – the systemtic theory, CR 15ème Coll., GFR, Paris (1980)
[11] Une méthode simplifiée pour le calcul des propriétés élastiques de matériaux hétérogènes à structure périodique, C. R. Acad. Sci Paris, Sér. II, Volume 311 (1990), pp. 769-774
[12] Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, Volume 38 (1990), pp. 813-841
[13] On the homogenization and the simulation of random materials, Eur. J. Mech. A Solids, Volume 11 (1992), pp. 585-607
Cited by Sources:
Comments - Policy