Comptes Rendus
Periodization of random media and representative volume element size for linear composites
Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 187-195.

Several existing numerical studies show that the effective linear properties of random composites can be accurately estimated using small volumes subjected to periodic boundary conditions – more suitable than homogeneous strain or stress boundary conditions – providing that a sufficient number of realizations are considered. Introducing the concept of periodization of random media, this Note gives a new definition of representative volume element which leads to estimates of its minimum size in agreement with existing theoretical results. A qualitative convergence criterion for the numerical simulations is proposed and illustrated with finite element computations.

Plusieurs simulations numériques montrent que les propriétés effectives linéaires des matériaux aléatoires peuvent être calculées sur de petits échantillons soumis à des conditions limites périodiques – plus adaptées que les conditions uniformes en contrainte ou en déformation – pourvu que le nombre d'échantillons considérés soit suffisamment grand. En introduisant le concept de périodisation des milieux aléatoires, cette Note donne une nouvelle définition du volume élémentaire représentatif qui conduit à des estimations de sa taille minimale conformes aux résultats théoriques existants. Un critère qualitatif de convergence des simulations numériques est proposé et illustré par des calculs par éléments finis.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2004.10.003
Keywords: Computational solid mechanics, Homogenization, Periodization, Random media, Representative volume element
Mot clés : Mécanique des solides numérique, Homogénéisation, Périodisation, Milieux aléatoires, Volume élémentaire représentatif

Karam Sab 1; Boumediene Nedjar 1

1 Institut Navier, LAMI, École nationale des ponts et chaussées, 6-8, avenue Blaise Pascal, Champs-sur-Marne, 77455 Marne-la-Vallée cedex 2, France
@article{CRMECA_2005__333_2_187_0,
     author = {Karam Sab and Boumediene Nedjar},
     title = {Periodization of random media and representative volume element size for linear composites},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {187--195},
     publisher = {Elsevier},
     volume = {333},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crme.2004.10.003},
     language = {en},
}
TY  - JOUR
AU  - Karam Sab
AU  - Boumediene Nedjar
TI  - Periodization of random media and representative volume element size for linear composites
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 187
EP  - 195
VL  - 333
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2004.10.003
LA  - en
ID  - CRMECA_2005__333_2_187_0
ER  - 
%0 Journal Article
%A Karam Sab
%A Boumediene Nedjar
%T Periodization of random media and representative volume element size for linear composites
%J Comptes Rendus. Mécanique
%D 2005
%P 187-195
%V 333
%N 2
%I Elsevier
%R 10.1016/j.crme.2004.10.003
%G en
%F CRMECA_2005__333_2_187_0
Karam Sab; Boumediene Nedjar. Periodization of random media and representative volume element size for linear composites. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 187-195. doi : 10.1016/j.crme.2004.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.10.003/

[1] A.A. Gusev Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, Volume 45 (1997), pp. 1449-1459

[2] K. Terada; T. Ito; N. Kikuchi Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method, Comput. Methods Appl. Engrg., Volume 153 (1998), pp. 223-257

[3] T. Kanit; S. Forest; I. Galliet; V. Mounoury; D. Jeulin Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., Volume 40 (2003), pp. 3647-3679

[4] W.J. Drugan; J.R. Willis A micromechanics-based nonlocal constitutuve equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, Volume 44 (1996) no. 4, pp. 497-524

[5] K. Sab Principe de Hill et homogénéisation des matériaux aléatoires, C. R. Acad. Sci Paris, Sér. II, Volume 312 (1991), pp. 1-5

[6] K. Sab Homogenization of non-linear random media by a duality method. Application to plasticity, Asymptotic Anal., Volume 9 (1994), pp. 311-336

[7] G. Matheron Eléments pour une théorie des milieux poreux, Masson, Paris, 1967

[8] S. Torquato Random heterogeneous media: microstructure and improved bounds on effective properties, Appl. Mech. Rev., Volume 44 (1991), pp. 37-76

[9] J.R. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202

[10] E. Kröner Linear properties of random media – the systemtic theory, CR 15ème Coll., GFR, Paris (1980)

[11] P. Suquet Une méthode simplifiée pour le calcul des propriétés élastiques de matériaux hétérogènes à structure périodique, C. R. Acad. Sci Paris, Sér. II, Volume 311 (1990), pp. 769-774

[12] C. Huet Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, Volume 38 (1990), pp. 813-841

[13] K. Sab On the homogenization and the simulation of random materials, Eur. J. Mech. A Solids, Volume 11 (1992), pp. 585-607

Cited by Sources:

Comments - Policy