Numerical simulations of natural convection in cavities performed with the usual Boussinesq equations result in an unbalanced irreversibility budget. Thermodynamic analysis shows that these equations represent a system that exchanges with the surroundings, not only two heat fluxes, but also two fluxes of mechanical energy: an input, that generates the fluid motion, and an output, due to viscous friction. After this analysis, the thermodynamic discrepancies can be explained.
. Les simulations numériques réalisées avec les équations de Boussinesq usuelles ne peuvent pas donner un bilan d'irréversibilités fermé. L'analyse thermodynamique démontre que ces équations représentent un système qui échange avec l'extérieur, en plus des deux flux de chaleur, deux flux d'énergie mécanique : un flux entrant, qui est la source du mouvement du fluide, un flux sortant, qui est dû à la friction visqueuse. Grâce à cette analyse, les incohérences thermodynamiques trouvent une explication.
Accepted:
Published online:
Mots-clés : Transferts thermiques, Mécanique des fluides, Convection naturelle, Boussinesq, Thermodynamique, Irréversibilités
Michel Pons 1; Patrick Le Quéré 1
@article{CRMECA_2005__333_2_127_0, author = {Michel Pons and Patrick Le Qu\'er\'e}, title = {An example of entropy balance in natural convection, {Part} 1: the \protect\emph{usual} {Boussinesq} equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {127--132}, publisher = {Elsevier}, volume = {333}, number = {2}, year = {2005}, doi = {10.1016/j.crme.2004.11.011}, language = {en}, }
TY - JOUR AU - Michel Pons AU - Patrick Le Quéré TI - An example of entropy balance in natural convection, Part 1: the usual Boussinesq equations JO - Comptes Rendus. Mécanique PY - 2005 SP - 127 EP - 132 VL - 333 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2004.11.011 LA - en ID - CRMECA_2005__333_2_127_0 ER -
Michel Pons; Patrick Le Quéré. An example of entropy balance in natural convection, Part 1: the usual Boussinesq equations. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 127-132. doi : 10.1016/j.crme.2004.11.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.11.011/
[1] An example of entropy balance in natural convection, Part 2: the thermodynamic Boussinesq equations, C. R. Mecanique 333 (2005) (in this issue) | DOI
[2] Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infloge von Temperatur Differenzen, Ann. Phys. Chem., Volume 7 (1879), pp. 271-292
[3] Théorie analytique de la chaleur, Gauthier-Villars, Paris, 1903
[4] Buoyancy-induced flows and transport, Hemisphere, New York, 1988
[5] Convection Heat Transfer, Wiley, New York, 1984
[6] Physical Fluid Dynamics, Oxford University Press, Oxford, 1988
[7] On the Boussinesq approximation for a compressible fluid, Astrophys. J., Volume 131 (1960), pp. 442-447
[8] The magnitude of the dissipation terms in the Boussinesq approximation, Astrophys. J., Volume 135 (1962), pp. 655-656
[9] The validity of the Boussinesq approximation for liquids and gases, Int. J. Heat Mass Transfer, Volume 19 (1976) no. 5, pp. 545-551
[10] Entropy Generation Through Heat and Fluid Flow, Wiley, New York, 1982
[11] Extended Irreversible Thermodynamics, Springer-Verlag, Berlin, 1996
[12] Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Methods Fluids, Volume 3 (1983), pp. 249-264
[13] Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, Volume 20 (1991) no. 1, pp. 29-41
[14] A general methodology for investigating flow instabilities in complex geometries: application to natural convection in enclosures, Int. J. Numer. Methods Fluids, Volume 37 (2001) no. 2, pp. 175-208
Cited by Sources:
Comments - Policy