A shape optimization problem is considered for the Dirichlet Laplacian. Asymptotic analysis is used in order to characterise the optimal shapes which are finally given by a singular perturbation of the smooth initial domain.
Un problème d'optimisation de forme est posé pour l'énergie du Laplacien avec conditions de Dirichlet. Des formes optimales obtenues par l'analyse asymptotique sont données par une perturbation singulière du domain initial régulier.
Accepted:
Published online:
Mots-clés : Mécanique des solides numérique, Laplacien de Dirichlet, Problème d'optimisation de forme
Serguei A. Nazarov 1; Jan Sokolowski 2
@article{CRMECA_2005__333_4_305_0, author = {Serguei A. Nazarov and Jan Sokolowski}, title = {Singular perturbations in shape optimization for the {Dirichlet} {Laplacian}}, journal = {Comptes Rendus. M\'ecanique}, pages = {305--310}, publisher = {Elsevier}, volume = {333}, number = {4}, year = {2005}, doi = {10.1016/j.crme.2005.02.006}, language = {en}, }
Serguei A. Nazarov; Jan Sokolowski. Singular perturbations in shape optimization for the Dirichlet Laplacian. Comptes Rendus. Mécanique, Volume 333 (2005) no. 4, pp. 305-310. doi : 10.1016/j.crme.2005.02.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.02.006/
[1] Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992
[2] Derivation of the variational inequality for small increase of mode-one crack, Mekh. Tverd. Tela, Volume 2 (1989), pp. 152-160 (English transl. Mech. Solids, 24, 1989, pp. 145-152)
[3] On the equivalence of the fracture criteria for a mode-one crack in an elastic space, Mekh. Tverd. Tela, Volume 2 (1992), pp. 101-113 (in Russian)
[4] Quasistatic propagation of a mode-I crack in an elastic space, C. R. Acad. Sci. Paris. Sér. II, Volume 315 (1992), pp. 1453-1457
[5] Stable propagation of a mode-1 crack in an isotropic elastic space. Comparison of the Irwin and the Griffith approaches, Problemi attuali dell'analisi e della fisica matematica, Aracne, Roma, 2000, pp. 167-189
[6] Poincare–Steklov Operators and Their Applications in Analysis, Akad. Nauk SSSR, Vychisl. Tsentr, Moscow, 1983 18 pp. (in Russian)
[7] Deformation and tear-off of a thin gasket from hardly compressible material, Mekh. Tverd. Tela, Volume 5 (1993), pp. 123-134 (in Russian)
[8] Variation of the shape of the front of plane mode-one crack which is not in equilibrium locally, Mekh. Tverd. Tela, Volume 3 (1997), pp. 125-133 (in Russian)
[9] Smoothness properties of solutions to variational inequalities describing propagation of mode-1 cracks, Mathematical Aspects of Boundary Element Method (Palaiseau, 1998), CRC Res. Notes Math., vol. 414, Chapman & Hall, London, 2000, pp. 23-32
Cited by Sources:
Comments - Policy