In this work a modified version of the Lighthill–Curle's analogy is applied to study the near field acoustics of an upstream laminar flow past an open cavity. Three incompressible cases have been computed and are compared against the corresponding compressible results. The three incompressible cases are carried out with different time-step sizes, distances from the cavity trailing edge to the outlet and spatial resolution in the streamwise direction. The aim of the work is to study the differences in compressible and incompressible sources in Lighthill–Curle's equation and their influence on the sound radiated.
Dans cette étude une version modifiée de l'analogie de Lighthill–Curle est utilisée pour l'étude de l'acoustique en amont d'un écoulement laminaire passant une cavité. Trois cas incompressibles sont réalisés et comparés avec leurs homologues compressibles. Les trois cas incompressibles comprennent différents pas temporels, distances séparant le bord amount du bord aval et différentes résolutions spatiales dans la direction de l'écoulement. Le but de l'étude est l'analyse des différences entre les sources compressibles et incompressibles dans l'équation de Lighthill–Curle et leur influence sur le son propagé.
Mots-clés : Acoustique, Curle, Cavité, Incompressible CFD
Jonas Ask 1; Lars Davidson 2
@article{CRMECA_2005__333_9_660_0, author = {Jonas Ask and Lars Davidson}, title = {An acoustic analogy applied to the laminar upstream flow over an open {2D} cavity}, journal = {Comptes Rendus. M\'ecanique}, pages = {660--665}, publisher = {Elsevier}, volume = {333}, number = {9}, year = {2005}, doi = {10.1016/j.crme.2005.07.005}, language = {en}, }
Jonas Ask; Lars Davidson. An acoustic analogy applied to the laminar upstream flow over an open 2D cavity. Comptes Rendus. Mécanique, Computational AeroAcoustics: from acoustic sources modeling to farfield radiated noise prediction, Volume 333 (2005) no. 9, pp. 660-665. doi : 10.1016/j.crme.2005.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.07.005/
[1] J. Larsson, Computational Aero Acoustics for vehicle applications, Chalmers University of Technology, 2002
[2] The effect of flow oscillations on cavity drag, J. Fluid Mech., Volume 177 (1987), pp. 501-530
[3] Response of the cavity shear layer oscillations to external forcing, AIAA J., Volume 25 (1987), pp. 43-47
[4] T. Colonius, A.J. Basu, C.W. Rowley, Computation of sound generation and flow/acoustic instabilities in the flow past an open cavity, in: 3rd ASME/JSME Joint Fluids Engineering Conference, 1999, FEDSM99-7228
[5] On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities, J. Fluid Mech., Volume 455 (2002), pp. 315-346
[6] Application de méthodes intégrales au calcul du bruit de cavité, C. R. Mecanique, Volume 330 (2002) no. 1, pp. 13-20
[7] J. Ask et al., An acoustic analogy applied to incompressible flow field, in: EUROMECH Colloquium, no 449, 2003
[8] L. Davidsson, B. Farhanieh, CALC-BFC, A finite-volume code employing collocated variable arrangement and cartesian velocity components for computation of fluid flow and heat transfer in complex three-dimensional geometries, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, 1995
[9] S. Krajnovic, Large-Eddy Simulations for computing the flow around vehicles, Chalmers University of Technology, 2002
[10] S. Dahlström, Large Eddy Simulation of the flow around a high-lift airfoil, Chalmers University of Technology, 2003
[11] The influence of solid boundaries upon aerodynamic sound, Proc. Roy. Soc. London Ser. A, Volume 231 (1955), pp. 505-514
[12] Modeling aerodynamically generated sound of helicopter rotors, Prog. Aerospace Sci., Volume 39 (2003), pp. 83-120
Cited by Sources:
Comments - Policy