Comptes Rendus
Some useful hybrid approaches for predicting aerodynamic noise
Comptes Rendus. Mécanique, Volume 333 (2005) no. 9, pp. 666-675.

In recent years, several numerical studies have shown the feasibility of Direct Noise Computation (DNC) where the turbulent flow and the radiated acoustic field are obtained simultaneously by solving the compressible Navier–Stokes equations. The acoustic radiation obtained by DNC can be used as reference solution to investigate hybrid methods in which the sound field is usually calculated as a by-product of the flow field obtained by a more conventional Navier–Stokes solver. A hybrid approach is indeed of practical interest when only the non-acoustic part of the aerodynamic field is available. In this review, some acoustic analogies or hybrid approaches are revisited in the light of CAA.

Plusieurs travaux récents ont montré la faisabilité d'un calcul direct du bruit d'origine aérodynamique par résolution des équations de Navier–Stokes compressibles. Le champ acoustique obtenu par ce calcul direct peut servir de solution de référence pour étudier les méthodes hybrides, où le champ acoustique rayonné est calculé à partir d'une solution des équations de Navier–Stokes obtenue avec un solver conventionnel. Les méthodes hybrides sont en effet destinées à prévoir le champ sonore lorsqu'il est difficile d'effectuer un calcul aérodynamique compressible. Dans cet article, quelques analogies acoustiques sont revisitées en s'appuyant sur des résultats de l'aéroacoustique numérique.

Published online:
DOI: 10.1016/j.crme.2005.07.006
Keywords: Acoustics, Computational acoustics, Lighthill's analogy, Ffowcs Williams and Hawkings analogy, Propagation in flows, Diffraction
Mot clés : Acoustique, Aéroacoustique numérique, Analogie de Lighthill, Analogie de Ffowcs Williams et Hawkings, Propagation en écoulement, Diffraction

Christophe Bailly 1; Christophe Bogey 1; Xavier Gloerfelt 2

1 Laboratoire de mécanique des fluides et d'acoustique UMR CNRS 5509 & École centrale de Lyon, 36, avenue Guy de Collongue, 69134 Ecully cedex, France
2 Laboratoire de simulation numérique en mécanique des fluides (SINUMEF), ENSAM, 151, boulevard de l'hôpital, 75013 Paris, France
@article{CRMECA_2005__333_9_666_0,
     author = {Christophe Bailly and Christophe Bogey and Xavier Gloerfelt},
     title = {Some useful hybrid approaches for predicting aerodynamic noise},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {666--675},
     publisher = {Elsevier},
     volume = {333},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crme.2005.07.006},
     language = {en},
}
TY  - JOUR
AU  - Christophe Bailly
AU  - Christophe Bogey
AU  - Xavier Gloerfelt
TI  - Some useful hybrid approaches for predicting aerodynamic noise
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 666
EP  - 675
VL  - 333
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2005.07.006
LA  - en
ID  - CRMECA_2005__333_9_666_0
ER  - 
%0 Journal Article
%A Christophe Bailly
%A Christophe Bogey
%A Xavier Gloerfelt
%T Some useful hybrid approaches for predicting aerodynamic noise
%J Comptes Rendus. Mécanique
%D 2005
%P 666-675
%V 333
%N 9
%I Elsevier
%R 10.1016/j.crme.2005.07.006
%G en
%F CRMECA_2005__333_9_666_0
Christophe Bailly; Christophe Bogey; Xavier Gloerfelt. Some useful hybrid approaches for predicting aerodynamic noise. Comptes Rendus. Mécanique, Volume 333 (2005) no. 9, pp. 666-675. doi : 10.1016/j.crme.2005.07.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.07.006/

[1] M.J. Lighthill On sound generated aerodynamically. I. General theory, Proc. Roy. Soc. London, Volume 211 (1952) no. A1107, pp. 564-587

[2] C. Bogey; C. Bailly; D. Juvé Numerical simulation of the sound generated by vortex pairing in a mixing layer, AIAA J., Volume 38 (2000) no. 12, pp. 2210-2218

[3] X. Gloerfelt; F. Pérot; C. Bailly; D. Juvé Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers, J. Sound Vib., Volume 287 (2005), pp. 129-151

[4] D. Crighton Basic principles of aerodynamic noise generation, Progress Aerosp. Sci., Volume 16 (1975) no. 1, pp. 31-96

[5] C. Bogey, C. Bailly, Investigation of subsonic jet noise using LES: Mach and Reynolds number effects, in: 10th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2004-2023 (2004)

[6] S. Sarkar; M.Y. Hussaini Computation of the acoustic radiation from bounded homogeneous flows (J.C. Hardin; M.Y. Hussaini, eds.), Computational Aeroacoustics, Springer-Verlag, 1993, pp. 335-349

[7] F. Bastin; P. Lafon; S. Candel Computation of jet mixing noise due to coherent structures: the plane jet case, J. Fluid Mech., Volume 335 (1997), pp. 261-304

[8] D.P. Lockard An efficient, two-dimensional implementation of the Ffowcs Williams and Hawkings equation, J. Sound Vib., Volume 229 (2000) no. 4, pp. 897-911

[9] X. Gloerfelt; C. Bailly; D. Juvé Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods, J. Sound Vib., Volume 266 (2003) no. 1, pp. 119-146

[10] A. Witkowska; D. Juvé Numerical estimation of noise generated by homogeneous and isotropic turbulence, C. R. Acad. Sci. Paris, Sér. II, Volume 318 (1994), pp. 597-602 (in French)

[11] M. Wang; S.K. Lele; P. Moin Computation of quadrupole noise using acoustic analogy, AIAA J., Volume 34 (1996) no. 11, pp. 2247-2254

[12] B.E. Mitchell; S.K. Lele; P. Moin Direct computation of the sound generated by vortex pairing in an axisymmetric jet, J. Fluid Mech., Volume 383 (1999), pp. 113-142

[13] J.E. Ffowcs Williams; D.L. Hawkings Sound generation by turbulence and surfaces in arbitrary motion, Philos. Trans. Roy. Soc. London, Volume 264 (1969) no. A1151, pp. 321-342

[14] J.H. Casper, D.P. Lockard, M.R. Khorrami, C.L. Streett, Investigation of volumetric sources in airframe noise simulation, in: 10th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2004-2805 (2004)

[15] G.M. Lilley, On the noise from air jets, British Aeronautical Research Council, A.R.C. 20-276, 1958

[16] R.H. Kraichnan Pressure field within homogeneous anisotropic turbulence, J. Acoust. Soc. Am., Volume 28 (1956) no. 1, pp. 64-72

[17] D.C. Pridmore-Brown Sound propagation in a fluid flowing through an attenuating duct, J. Fluid Mech., Volume 4 (1958), pp. 393-406

[18] G.M. Lilley, The generation and radiation of supersonic jet noise. Vol. IV. Theory of turbulence generated jet noise, noise radiation from upstream sources, and combustion noise. Part II: Generation of sound in a mixing region, Air Force Aero Propulsion Laboratory, AFAPL-TR-72-53, vol. 4, 1972

[19] A. Powell Theory of vortex sound, J. Acoust. Soc. Am., Volume 16 (1964), pp. 177-195

[20] C. Bailly; C. Bogey Contributions of CAA to jet noise research and prediction, Internat. J. Comput. Fluid Dynam., Volume 18 (2004) no. 6, pp. 481-491

[21] C. Bogey; C. Bailly; D. Juvé Computation of flow noise using source terms in linearized Euler's equations, AIAA J., Volume 40 (2002) no. 2, pp. 235-243

[22] C. Bogey; X. Gloerfelt; C. Bailly An illustration of the inclusion of sound-flow interactions in Lighthill's equation, AIAA J., Volume 41 (2003) no. 8, pp. 1604-1608

[23] D.G. Crighton; A.P. Dowling; J.E. Ffowcs Williams; M. Heckl; F.G. Leppington Modern Methods in Analytical Acoustics, Springer-Verlag, London, 1992

[24] K.S. Brentner; F. Farassat Modeling aerodynamically generated sound of helicopter rotors, Progress Aerosp. Sci., Volume 39 (2003), pp. 83-120

[25] J. Prieur; G. Rahier Aeroacoustic integral methods, formulation and efficient numerical implementation, Aerosp. Sci. Technol., Volume 5 (2001), pp. 457-468 (see also addendum in vol. 6, p. 323)

[26] N. Curle The influence of solid boundaries on aerodynamic sound, Proc. Roy. Soc. London, Volume 231 (1955) no. A1187, pp. 505-514

Cited by Sources:

Comments - Policy