Comptes Rendus
Large-eddy simulation of transition to turbulence in a heated annular channel
[Simulation des grandes échelles de la transition à la turbulence dans un canal annulaire chauffé]
Comptes Rendus. Mécanique, Volume 333 (2005) no. 8, pp. 599-604.

On développe des simulation des grandes échelles tridimensionnelles de la convection naturelle dans un anneau horizontal, grâce au modèle sous-maille de Smagorinsky dynamique. L'apparition de la transition à la turbulence et des régimes turbulents sont analysés. On étudie aussi les charactéristiques des écoulements instables et leur influence sur les mécanismes d'échange thermique.

One carries out three-dimensional large-eddy simulations of natural convection in a horizontal annulus using Smagorinsky's dynamic subgrid model. The onset of transition to turbulence and turbulent regimes are analyzed. The characteristics of unstable flows and their influence on the heat-transfer process are studied.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2005.07.016
Keywords: Heat transfer, Computational fluid dynamics, Natural convection, Transition to turbulence, Large-eddy simulation, Dynamic subgrid model, Chaos
Mot clés : Transferts thermiques, Dynamique des fluides numérique, Convection naturelle, Transition à la turbulence, Simulation des grandes échelles, Modèle sous-maille dynamique, Chaos
Elie Luis M. Padilla 1 ; Aristeu Silveira-Neto 1

1 School of Mechanical Engineering, Federal University of Uberlândia, Uberlândia-MG, Brazil 38400-902
@article{CRMECA_2005__333_8_599_0,
     author = {Elie Luis M. Padilla and Aristeu Silveira-Neto},
     title = {Large-eddy simulation of transition to turbulence in a heated annular channel},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {599--604},
     publisher = {Elsevier},
     volume = {333},
     number = {8},
     year = {2005},
     doi = {10.1016/j.crme.2005.07.016},
     language = {en},
}
TY  - JOUR
AU  - Elie Luis M. Padilla
AU  - Aristeu Silveira-Neto
TI  - Large-eddy simulation of transition to turbulence in a heated annular channel
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 599
EP  - 604
VL  - 333
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2005.07.016
LA  - en
ID  - CRMECA_2005__333_8_599_0
ER  - 
%0 Journal Article
%A Elie Luis M. Padilla
%A Aristeu Silveira-Neto
%T Large-eddy simulation of transition to turbulence in a heated annular channel
%J Comptes Rendus. Mécanique
%D 2005
%P 599-604
%V 333
%N 8
%I Elsevier
%R 10.1016/j.crme.2005.07.016
%G en
%F CRMECA_2005__333_8_599_0
Elie Luis M. Padilla; Aristeu Silveira-Neto. Large-eddy simulation of transition to turbulence in a heated annular channel. Comptes Rendus. Mécanique, Volume 333 (2005) no. 8, pp. 599-604. doi : 10.1016/j.crme.2005.07.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.07.016/

[1] W. Beckmann Die Wärmeübertragung in zylindrischen Gasschichten bei natürlicher Konvektion, Forschung auf dem Geb. des Ing., Volume 2 (1931) no. 5, pp. 165-178

[2] U. Grigull, W. Hauf, Natural convection in horizontal cylindrical annuli, in: Third Int. Heat Transfer Conf., 1966, 182–195

[3] T.H. Kuehn; R.J. Goldstein An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli, ASME J. Heat Transfer, Volume 100 (1978), pp. 635-640

[4] A.E. McLeod; E.H. Bishop Turbulent natural convection of gases in horizontal cylindrical annuli at cryogenic temperatures, Int. J. Heat Mass Transfer, Volume 32 (1989) no. 10, pp. 1967-1978

[5] B. Farouk; S.I. Guçeri Natural convection from a horizontal cylinder-laminar regime, J. Heat Transfer, Volume 103 (1982), pp. 522-527

[6] M.I. Char; Y.H. Hsu Comparative analysis of linear and nonlinear low-Reynolds-number eddy viscosity models to turbulent natural convection in horizontal cylindrical annuli, Numer. Heat Transfer Part A, Volume 33 (1998), pp. 191-206

[7] C.P. Desai; K. Vafai An investigation and comparative analysis of two-and tree-dimensional turbulent natural convection in a horizontal annulus, Int. J. Heat Mass Transfer, Volume 37 (1994) no. 16, pp. 2475-2504

[8] K. Fukuda; Y. Miki; S. Hasegawa Analytical and experimental study on turbulent natural convection in a horizontal annulus, Int. J. Heat Mass Transfer, Volume 33 (1990) no. 4, pp. 629-639

[9] Y. Miki; K. Fukuda; N. Taniguchi Large eddy simulation of turbulent natural convection in concentric horizontal annuli, Int. J. Heat Fluid Flow, Volume 14 (1993) no. 3, pp. 210-216

[10] M. Lesieur Turbulence in Fluids, Kluwer Academic, 1997

[11] E.L.M. Padilla, Large-eddy simulation of transition to turbulence in rotating system with heat transfer, Doctor Thesis, Universidade Federal de Uberlândia, 2004

[12] D.K. Lilly A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, Volume 4 (1992) no. 3, pp. 633-635

[13] A. Silveira-Neto; D. Grand; O. Metais; M. Lesieur A numerical investigation of the coherent structures of turbulence behind a backward-facing step, J. Fluid Mech., Volume 256 (1993), pp. 1-25

[14] J. Kim; P. Moin Application of a fractional step method to incompressible Navier–Stokes equations, J. Comput. Phys., Volume 59 (1985), pp. 308-323

[15] E.H. Bishop; C.T. Carley; R.E. Powe Natural convective oscillatory flow in cylindrical annuli, Int. J. Heat Mass Transfer, Volume 11 (1968), pp. 1741-1752

[16] M. Itoh; T. Fujita; N. Nishiwaki; M. Hirata A new method of correlating heat-transfer coefficients for natural convection in horizontal cylindrical annuli, Int. J. Heat Mass Transfer, Volume 13 (1970), pp. 1364-1369

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow

Jean-Luc Aider; Alexandra Danet

C. R. Méca (2006)


Couplage d'un modèle stochastique lagrangien sous-maille avec une simulation grandes échelles

Ivana Vinkovic; Cesar Aguirre; Serge Simoëns; ...

C. R. Méca (2005)


Turbulence modeling and simulation advances in CFD during the past 50 years

Roland Schiestel; Bruno Chaouat

C. R. Méca (2022)