Three-dimensional calculations have been done to simulate the onset of convective motion in ternary nondilute solution under phase transition conditions. The process is considered for Rayleigh number in the range , where subcritical convective motion with hexagonal flow pattern is identified. The results are in good agreement with the linear and finite amplitude theory of hydrodynamics instability.
Le présent papier concerne les résultats numériques des instabilités de convection naturelle dans un système ternaire en changement de phase. Les simulations sont effectuées en configuration tridimensionnelle. Une bifurcation sous critique avec des cellules hexagonales est identifiée dans la gamme des nombres de Rayleigh . Les résultats de simulation sont en bon accord avec les prédictions de la théorie de stabilité linéaire et d'amplitude finie.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Instabilité et transition
Viatcheslav V. Kolmychkov 1; Olga S. Mazhorova 1; Yurii P. Popov 1; Patrick Bontoux 2; Mohammed El Ganaoui 3
@article{CRMECA_2005__333_10_739_0, author = {Viatcheslav V. Kolmychkov and Olga S. Mazhorova and Yurii P. Popov and Patrick Bontoux and Mohammed El Ganaoui}, title = {Identification of the convective instability in a multi-component solution by {3D} simulations}, journal = {Comptes Rendus. M\'ecanique}, pages = {739--745}, publisher = {Elsevier}, volume = {333}, number = {10}, year = {2005}, doi = {10.1016/j.crme.2005.08.004}, language = {en}, }
TY - JOUR AU - Viatcheslav V. Kolmychkov AU - Olga S. Mazhorova AU - Yurii P. Popov AU - Patrick Bontoux AU - Mohammed El Ganaoui TI - Identification of the convective instability in a multi-component solution by 3D simulations JO - Comptes Rendus. Mécanique PY - 2005 SP - 739 EP - 745 VL - 333 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2005.08.004 LA - en ID - CRMECA_2005__333_10_739_0 ER -
%0 Journal Article %A Viatcheslav V. Kolmychkov %A Olga S. Mazhorova %A Yurii P. Popov %A Patrick Bontoux %A Mohammed El Ganaoui %T Identification of the convective instability in a multi-component solution by 3D simulations %J Comptes Rendus. Mécanique %D 2005 %P 739-745 %V 333 %N 10 %I Elsevier %R 10.1016/j.crme.2005.08.004 %G en %F CRMECA_2005__333_10_739_0
Viatcheslav V. Kolmychkov; Olga S. Mazhorova; Yurii P. Popov; Patrick Bontoux; Mohammed El Ganaoui. Identification of the convective instability in a multi-component solution by 3D simulations. Comptes Rendus. Mécanique, Volume 333 (2005) no. 10, pp. 739-745. doi : 10.1016/j.crme.2005.08.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.08.004/
[1] Numerical study for liquid phase epitaxy of solid solution, J. Crystal Growth, Volume 245 (2002), pp. 21-30
[2] Numerical modelling for convection in growth/dissolution of solid solution by liquid phase epitaxy, J. Crystal Growth, Volume 269 (2004), pp. 284-291
[3] The stability of finite amplitude cellular connection and its relation to an extremum principle, J. Fluid Mech., Volume 30 (1967) no. 4, pp. 625-649
[4] Finite amplitude convection with changing mean temperature. Part I. Theory, J. Fluid Mech., Volume 33 (1968) no. 3, pp. 445-455
[5] Finite amplitude convection with changing mean temperature. Part II. An experimental test of the theory, J. Fluid Mech., Volume 33 (1968) no. 3, pp. 457-463
[6] Rayleigh–Bernard Correction Structures and Dynamics, World Scientific, Singapore, 1998
[7] V.V. Kolmychkov, O.S. Mazhorova, Yu.P. Popov, On the solution of Navier–Stokes equations in primitive variables, Preprint No. 60, Keldysh Institute of Applied Mathematics, Moscow, 2001, 39 p
[8] The planforms and onset of convection with a temperature-dependent viscosity, J. Fluid Mech., Volume 191 (1988) no. 3, pp. 247-286
[9] Numerical simulation of Benard–Marangoni convection in small aspect ratio containers, Numer. Heat Transfer A, Volume 42 (2002), p. 5572
[10] V.V. Kolmychkov, O.S. Mazhorova, Yu.P. Popov, Mathematical modelling for convective mass transfer in 3D case, part 1, Preprint No. 92, Keldysh Institute of Applied Mathematics, Moscow, 2003, 28 p
[11] V.V. Kolmychkov, O.S. Mazhorova, Yu.P. Popov, Mathematical modelling for convective mass transfer in 3D case, part 2, Preprint No. 98, Keldysh Institute of Applied Mathematics, Moscow, 2003, 34 p
Cited by Sources:
Comments - Policy