The subharmonic acoustic radiation of a tone excited subsonic jet shear-layer has been investigated experimentally. Two jet velocities and were studied. For , the natural boundary-layer at the nozzle exit is laminar. When the perturbation is applied, the fluctuations of the first and the second subharmonics of the excitation frequency are detected in the shear-layer. In addition, the first subharmonic near pressure field along the spreading jet is constituted of two strong maxima of sinusoidal shape. The far-field directivity pattern displays two lobes separated by an extinction angle at around 85° from the jet axis. These observations follow the results of Bridges about the vortex pairing noise. On the other hand, for , the initial boundary-layer is transitional and only the first subharmonic is observed in the presence of the excitation. The near pressure field is of Gaussian shape in the jet periphery and the acoustic far-field is superdirective as observed by Laufer and Yen. The state of the initial shear-layer seems to be the key feature to distinguish these two different radiation patterns.
Le rayonnement acoustique sous-harmonique de la couche de cisaillement d'un jet subsonique excité tonalement a été étudié pour deux vitesses de jet, et . Pour , la couche limite naturelle en sortie de buse est laminaire. En présence du forçage, les fluctuations du premier et du second sous-harmonique de la fréquence de l'excitation sont détectées dans la couche de cisaillement. Par ailleurs, le champ proche du premier sous-harmonique de la pression mesuré le long du jet est constitué de deux maxima de forme sinusoïdale. Le diagramme de directivité en champ lointain possède deux lobes séparés par un angle d'extinction autour de 85° de l'axe du jet. Ces observations sont en accord avec les résultats de Bridges concernant le bruit d'appariement tourbillonnaire. En revanche, pour , la couche limite initiale est transitionnelle et seul le premier sous-harmonique est observé lorsque l'excitation est utilisée. Dans ce cas, le champ de pression proche en périphérie du jet est de forme gaussienne et le champ acoustique lointain est superdirectif, comme observé par Laufer et Yen. L'état initial de la couche de cisaillement semble être le facteur déterminant pour distinguer ces deux rayonnements très différents.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Jet excité, Sous-harmonique, Bruit d'appariement, Rayonnement superdirectif
Vincent Fleury 1; Christophe Bailly 1; Daniel Juvé 1
@article{CRMECA_2005__333_10_746_0, author = {Vincent Fleury and Christophe Bailly and Daniel Juv\'e}, title = {Shear-layer acoustic radiation in an excited subsonic jet: experimental study}, journal = {Comptes Rendus. M\'ecanique}, pages = {746--753}, publisher = {Elsevier}, volume = {333}, number = {10}, year = {2005}, doi = {10.1016/j.crme.2005.09.003}, language = {en}, }
TY - JOUR AU - Vincent Fleury AU - Christophe Bailly AU - Daniel Juvé TI - Shear-layer acoustic radiation in an excited subsonic jet: experimental study JO - Comptes Rendus. Mécanique PY - 2005 SP - 746 EP - 753 VL - 333 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2005.09.003 LA - en ID - CRMECA_2005__333_10_746_0 ER -
Vincent Fleury; Christophe Bailly; Daniel Juvé. Shear-layer acoustic radiation in an excited subsonic jet: experimental study. Comptes Rendus. Mécanique, Volume 333 (2005) no. 10, pp. 746-753. doi : 10.1016/j.crme.2005.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.09.003/
[1] Discrete noise spectrum generated by an acoustically excited jet, AIAA J., Volume 18 (1980) no. 4, pp. 434-441
[2] J.E. Bridges, Application of coherent structure and vortex sound theories to jet noise, Ph.D. Dissertation, University of Houston, 1990
[3] Noise generation by a low-Mach-number jet, J. Fluid Mech., Volume 134 (1983), pp. 1-31
[4] Shear-layer fluctuating pressure and superdirective acoustic sources, J. Fluid Mech., Volume 220 (1990), pp. 355-368
[5] Subharmonics and vortex merging in mixing layers, J. Fluid Mech., Volume 119 (1982), pp. 443-473
[6] Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics, J. Fluid Mech., Volume 101 (1980), pp. 493-544
[7] Sound generated by instability waves of supersonic flows. Part 2, axisymmetric jets, J. Fluid Mech., Volume 138 (1984), pp. 273-295
[8] Supersonic jet noise, Annu. Rev. Fluid Mech., Volume 27 (1995), pp. 17-43
[9] Coherent structures and turbulence, J. Fluid Mech., Volume 173 (1986), pp. 303-356
[10] Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible LES, Theoret. Comput. Fluid Dynam., Volume 16 (2003) no. 4, pp. 273-297
[11] On vortex sound at low Mach number, J. Fluid Mech., Volume 85 (1978), pp. 685-691
[12] Réalisation d'une chambre anéchoïque revêtue de panneaux et destinée à l'étude des bruits d'origine aérodynamique, Acustica, Volume 29 (1973) no. 2, pp. 69-78
[13] Far-field noise of a subsonic jet under controlled excitation, J. Fluid Mech., Volume 152 (1985), pp. 83-111
[14] On spatially growing disturbances in an inviscid shear layer, J. Fluid Mech., Volume 23 (1965), pp. 521-544
[15] On the transition in a separated laminar boundary layer, J. Fluid Mech., Volume 25 (1966), pp. 683-704
[16] Direct evaluation of aeroacoustic theory in a jet, J. Fluid Mech., Volume 240 (1992), pp. 469-501
[17] V. Fleury, C. Bailly, D. Juvé, Shear-layer acoustic radiation in an excited subsonic jet: Models for vortex pairing and superdirective noise, C. R. Mecanique 333 (2005), in this issue
Cited by Sources:
Comments - Policy