[Le problème bidimensionelle d'ondes de surface stationnaires en profondeur finie : le régime sans ondes de petite amplitude]
Nous étudions le problème bidimensionnel d'ondes stationnaires sur la surface des eaux de profondeur finie sans hypothèse préalable concernant leur symétrie ou périodicité. Une nouvelle forme d'équations de Bernoulli est dérivée avec l'introduction d'un nouveau paramètre de bifurcation qui est le produit du nombre de Froude μ et le débit fluide ω. Il résulte de cette équation que les ondes de petite amplitude n'existent pas pour .
The two-dimensional problem of steady waves on water of finite depth is considered without assumptions about periodicity and symmetry of waves. A new form of Bernoulli's equation is derived, and it involves a new bifurcation parameter which is the product of the Froude number μ and the rate of flow ω. The main result obtained from this equation is the absence of waves, having sufficiently small amplitude, provided .
Accepté le :
Publié le :
Mot clés : Mécanique des fluides, Ondes de surface stationnaires, Équation de Bernoulli, Petite amplitude, Nombre de Froude, Débit fluide
Vladimir Kozlov 1 ; Nikolay Kuznetsov 2
@article{CRMECA_2005__333_10_733_0, author = {Vladimir Kozlov and Nikolay Kuznetsov}, title = {The two-dimensional problem of steady waves on water of finite depth: regimes without waves of small amplitude}, journal = {Comptes Rendus. M\'ecanique}, pages = {733--738}, publisher = {Elsevier}, volume = {333}, number = {10}, year = {2005}, doi = {10.1016/j.crme.2005.09.001}, language = {en}, }
TY - JOUR AU - Vladimir Kozlov AU - Nikolay Kuznetsov TI - The two-dimensional problem of steady waves on water of finite depth: regimes without waves of small amplitude JO - Comptes Rendus. Mécanique PY - 2005 SP - 733 EP - 738 VL - 333 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2005.09.001 LA - en ID - CRMECA_2005__333_10_733_0 ER -
%0 Journal Article %A Vladimir Kozlov %A Nikolay Kuznetsov %T The two-dimensional problem of steady waves on water of finite depth: regimes without waves of small amplitude %J Comptes Rendus. Mécanique %D 2005 %P 733-738 %V 333 %N 10 %I Elsevier %R 10.1016/j.crme.2005.09.001 %G en %F CRMECA_2005__333_10_733_0
Vladimir Kozlov; Nikolay Kuznetsov. The two-dimensional problem of steady waves on water of finite depth: regimes without waves of small amplitude. Comptes Rendus. Mécanique, Volume 333 (2005) no. 10, pp. 733-738. doi : 10.1016/j.crme.2005.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.09.001/
[1] Stokes waves, Topol. Methods Nonlinear Anal., Volume 7 (1996), pp. 1-48 (Erratum)
[2] Nonlinear Functional Analysis and its Applications, IV, Springer-Verlag, Berlin/New York, 1987
[3] Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes' family, J. Fluid Mech., Volume 241 (1992), pp. 333-347
[4] The regularity and local bifurcation of steady periodic waves, Arch. Ration. Mech. Anal., Volume 152 (2000), pp. 207-240
[5] The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal., Volume 152 (2000), pp. 241-271
[6] The Mathematical Theory of Permanent Progressive Water-Waves, World Scientific, Singapore, 2001
[7] Travelling gravity water waves in two and three dimensions, European J. Mech. B/Fluids, Volume 21 (2002), pp. 615-641
[8] Numerical evidence for the existence of new types of gravity waves of permanent form on deep water, Stud. Appl. Math., Volume 62 (1980), pp. 1-21
Cité par Sources :
Commentaires - Politique