[La méthode directe]
An alternative numerical method to solve structural evolution problems is presented. It belongs to the family of Large Time Increment Methods. The problem is solved on the whole time interval separating a global stage where a SA and KA solution is searched and a local stage where the constitutive law is satisfied. To solve the global stage, consuming the most CPU time, the mechanical fields are decomposed in a wavelet basis and the equilibrium is solved only for the largest coefficients.
Cette Note présente une méthode numérique alternative de résolution de problèmes transitoires. Elle s'inscrit dans le cadre des méthodes à Grand Incrément de Temps ; la solution est recherchée sur la totalité du trajet de chargement en résolvant alternativement un problème dit global où l'on recherche une solution SA et CA et un problème local où on satisfait la loi de comportement. L'étape globale étant la plus coûteuse en temps de calcul, sa résolution se fait en décomposant le chargement sur une base d'ondelettes et en résolvant l'équilibre uniquement pour les coefficients d'ondelettes les plus importants.
Accepté le :
Publié le :
Mots-clés : Mécanique des solides numérique, Solides et structures, Grand incrément, Ondelettes
François Comte 1, 2, 3 ; Habibou Maitournam 1 ; Pierre Burry 2 ; T. Mac Lan Nguyen 2
@article{CRMECA_2006__334_5_317_0, author = {Fran\c{c}ois Comte and Habibou Maitournam and Pierre Burry and T. Mac Lan Nguyen}, title = {A direct method for the solution of evolution problems}, journal = {Comptes Rendus. M\'ecanique}, pages = {317--322}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2006}, doi = {10.1016/j.crme.2006.02.007}, language = {en}, }
TY - JOUR AU - François Comte AU - Habibou Maitournam AU - Pierre Burry AU - T. Mac Lan Nguyen TI - A direct method for the solution of evolution problems JO - Comptes Rendus. Mécanique PY - 2006 SP - 317 EP - 322 VL - 334 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2006.02.007 LA - en ID - CRMECA_2006__334_5_317_0 ER -
François Comte; Habibou Maitournam; Pierre Burry; T. Mac Lan Nguyen. A direct method for the solution of evolution problems. Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 317-322. doi : 10.1016/j.crme.2006.02.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.02.007/
[1] Nonlinear Computational Structural Methods: New Approaches and Non Incremental Methods of Calculation, Springer-Verlag, Berlin/New York, 1998
[2] Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique, C. R. Mecanique, Volume 330 (2002), pp. 703-708
[3] On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Methods Engrg., Volume 11 (1977), pp. 817-832
[4] Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., Volume 48 (1985), pp. 101-118
[5] A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, 1999
[6] Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997
- A new adjustable localization operator method to compute local stresses and strains at notched bodies under multiaxial cyclic loading, International Journal of Fatigue, Volume 182 (2024), p. 108194 | DOI:10.1016/j.ijfatigue.2024.108194
- Improvement of the Adjustable Localization Operator identification based on the confined plasticity zone shape for multiaxial elasto-plastic cyclic predictions, International Journal of Solids and Structures, Volume 262-263 (2023), p. 112077 | DOI:10.1016/j.ijsolstr.2022.112077
- A non-incremental numerical method for dynamic elastoplastic problems by the symplectic Brezis-Ekeland-Nayroles principle, Computer Methods in Applied Mechanics and Engineering, Volume 384 (2021), p. 25 (Id/No 113908) | DOI:10.1016/j.cma.2021.113908 | Zbl:1506.74059
- A mixed PGD-a priori time basis strategy for the simulation of cyclic transient thermal behavior, Mechanics Industry, Volume 21 (2020) no. 6, p. 606 | DOI:10.1051/meca/2020082
- On the Validation of the Proper Generalized Decomposition Method with Finite Element Method: 3D Heat Problem Under Cyclic Loading, Mechanism, Machine, Robotics and Mechatronics Sciences, Volume 58 (2019), p. 3 | DOI:10.1007/978-3-319-89911-4_1
- Proper generalized decomposition for multiscale and multiphysics problems, Archives of Computational Methods in Engineering, Volume 17 (2010) no. 4, pp. 351-372 | DOI:10.1007/s11831-010-9053-2 | Zbl:1269.74209
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique