[Filtrage en ondelettes orthogonales pour lʼétude de la turbulence dans les plasmas : Comparaison entre la méthode CVE et la méthode POD]
Cet article compare deux méthodes permettant dʼextraire les contributions cohérentes dans les écoulements turbulents : la méthode CVE (Coherent Vorticity Extraction), basée sur la représentation en ondelettes, et la méthode POD (Proper Orthogonal Decomposition). La première méthode, CVE, décompose lʼécoulement en base dʼondelettes orthogonales puis, grâce au filtrage des coefficients dʼondelettes, permet de séparer lʼécoulement entre une contribution cohérente ayant un comportement statistique non Gaussien et un écoulement résiduel aléatoire ne présentant pas de structures. La seconde méthode, POD, est basée sur la décomposition en valeurs singulières. Elle décompose lʼécoulement dans la base de fonctions qui retient le mieux lʼénergie dʼun ensemble de réalisations de lʼécoulement. Ces deux méthodes sont ensuite utilisées pour analyser les résultats de simulations numériques directes calculant un écoulement turbulent bidimensionnel dʼondes de dérive, gouverné par lʼéquation dʼHasegawa–Wakatani, ceci pour deux cas limites : le régime quasi-hydrodynamique et le régime quasi-adiabatique. Les résultats sont comparés en fonction des taux de compression, des proportions dʼenstrophie et de flux radial retenues, ainsi que du spectre dʼenstrophie (statistique dʼordre deux) et de statistiques dʼordre plus élévé.
We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa–Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics.
Mots-clés : POD, Ondelettes, Turbulence plasma, Structures cohérentes
Shimpei Futatani 1 ; Wouter J.T. Bos 2 ; Diego del-Castillo-Negrete 3 ; Kai Schneider 4 ; Sadruddin Benkadda 1 ; Marie Farge 5
@article{CRPHYS_2011__12_2_123_0, author = {Shimpei Futatani and Wouter J.T. Bos and Diego del-Castillo-Negrete and Kai Schneider and Sadruddin Benkadda and Marie Farge}, title = {Coherent vorticity extraction in resistive drift-wave turbulence: {Comparison} of orthogonal wavelets versus proper orthogonal decomposition}, journal = {Comptes Rendus. Physique}, pages = {123--131}, publisher = {Elsevier}, volume = {12}, number = {2}, year = {2011}, doi = {10.1016/j.crhy.2010.12.004}, language = {en}, }
TY - JOUR AU - Shimpei Futatani AU - Wouter J.T. Bos AU - Diego del-Castillo-Negrete AU - Kai Schneider AU - Sadruddin Benkadda AU - Marie Farge TI - Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition JO - Comptes Rendus. Physique PY - 2011 SP - 123 EP - 131 VL - 12 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2010.12.004 LA - en ID - CRPHYS_2011__12_2_123_0 ER -
%0 Journal Article %A Shimpei Futatani %A Wouter J.T. Bos %A Diego del-Castillo-Negrete %A Kai Schneider %A Sadruddin Benkadda %A Marie Farge %T Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition %J Comptes Rendus. Physique %D 2011 %P 123-131 %V 12 %N 2 %I Elsevier %R 10.1016/j.crhy.2010.12.004 %G en %F CRPHYS_2011__12_2_123_0
Shimpei Futatani; Wouter J.T. Bos; Diego del-Castillo-Negrete; Kai Schneider; Sadruddin Benkadda; Marie Farge. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition. Comptes Rendus. Physique, Propagation and plasmas: new challenges, new applications, Volume 12 (2011) no. 2, pp. 123-131. doi : 10.1016/j.crhy.2010.12.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.12.004/
[1] P. Holmes, J.L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, 1996.
[2] Transition and Turbulence (R.E. Meyer, ed.), Academic Press, New York, 1981, pp. 215-242
[3] Chaos, 13 (2003), p. 541
[4] Phys. Plasmas, 16 (2009), p. 042506
[5] Annu. Rev. Fluid Mech., 24 (1992), p. 395
[6] Phys. Fluids, 11 (1999), p. 2187
[7] Phys. Rev. Lett., 87 (2001), p. 054501
[8] Phys. Fluids, 19 (2007) no. 11, p. 11519 (1–13)
[9] Fluid Dyn. Res., 10 (1992), pp. 229-250
[10] J. Comput. Phys., 222 (2007), p. 265
[11] Phys. Plasmas, 15 (2008), p. 092308
[12] Phys. Fluids, 15 (2003) no. 10, pp. 2886-2896
[13] Phys. Plasmas, 13 (2006), p. 042304
[14] Phys. Plasmas, 15 (2008), p. 072305
[15] ESAIM Proc., 16 (2006), pp. 195-210
[16] J. Comput. Phys., 229 (2010), p. 2821
[17] Phys. Rev. Lett., 73 (1994), p. 3403
[18] Nonlinear Process. Geophys., 11 (2004), p. 393
[19] Phys. Rev. Lett., 50 (1983), p. 682
[20] Phys. Rev. Lett., 39 (1977), p. 205
[21] Matrix Computations, The John Hopkins University Press, London, 1996
[22] A Wavelet Tour of Signal Processing, Academic, New York, 1998
[23] J. Plasma Phys., 19 (1973), p. 107
- Tessellation-based analysis of impurity clustering in the edge plasma of tokamaks, Journal of Plasma Physics, Volume 91 (2025) no. 1 | DOI:10.1017/s0022377824001259
- Synthesizing impurity clustering in the edge plasma of tokamaks using neural networks, Physics of Plasmas, Volume 31 (2024) no. 3 | DOI:10.1063/5.0178085
- Validation and verification of a quasi two-dimensional turbulence model and an eddy detection method for liquid metal magnetohydrodynamics flows, Plasma Physics and Controlled Fusion, Volume 65 (2023) no. 4, p. 044005 | DOI:10.1088/1361-6587/acc091
- Wavelet adaptive proper orthogonal decomposition for large-scale flow data, Advances in Computational Mathematics, Volume 48 (2022) no. 2 | DOI:10.1007/s10444-021-09922-2
- Lagrangian conditional statistics and flow topology in edge plasma turbulence, Physics of Plasmas, Volume 29 (2022) no. 10 | DOI:10.1063/5.0098501
- Extracting Coherent Structures in Near-Wall Turbulence Based on Wavelet Analysis, Advances in Complex Analysis and Applications (2020) | DOI:10.5772/intechopen.92015
- Multi-scale statistical analysis of coronal solar activity, Nonlinear Processes in Geophysics, Volume 23 (2016) no. 4, p. 175 | DOI:10.5194/npg-23-175-2016
- Extraction and verification of coherent structures in near-wall turbulence, Chinese Physics B, Volume 22 (2013) no. 7, p. 074703 | DOI:10.1088/1674-1056/22/7/074703
- Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model, Physics of Plasmas, Volume 20 (2013) no. 10 | DOI:10.1063/1.4822335
- Proper orthogonal decomposition of a fully confined cubical differentially heated cavity flow at Rayleigh number Ra=109, Computers Fluids, Volume 61 (2012), p. 14 | DOI:10.1016/j.compfluid.2011.06.005
- Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition, Journal of Computational Physics, Volume 231 (2012) no. 11, p. 4234 | DOI:10.1016/j.jcp.2012.02.007
Cité par 11 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier